
ABSTRACT

Title of dissertation: Algorithms and Data Structures
for Faster Nearest-Neighbor
Classification

Alejandro Flores-Velazco,
Doctor of Philosophy, 2022

Dissertation directed by: Professor David M. Mount
Computer Science

Given a set P of n labeled points in a metric space (X , d), the nearest-neighbor
rule classifies an unlabeled query point q ∈ X with the class of q’s closest point in P .
Despite the advent of more sophisticated techniques, nearest-neighbor classification
is still fundamental for many machine-learning applications. Over the years, this has
motivated numerous research aiming to reduce its high dependency on the size and
dimensionality of the data. This dissertation presents various approaches to reduce
the dependency of the nearest-neighbor rule from n to some smaller parameter k, that
describes the intrinsic complexity of the class boundaries of P . This is of particular
significance as it is usually assumed that k ≪ n on real-world training sets.

One natural way to achieve this dependency reduction is to reduce the training
set itself, selecting a subset R ⊆ P to be used by the nearest-neighbor rule to answer
incoming queries, instead of using P . Essentially, reducing its dependency from n,
the size of P , to the size of R. We propose different techniques to select R, all of
which select subsets whose sizes are proportional to k, and have varying degrees of
correct classification guarantees.

Another alternative involves building data structures designed to answer these
classification queries, bypassing the preprocessing step of reducing P . We propose
the Chromatic AVD to answer ε-approximate nearest-neighbor classification queries,
and whose query times and storage requirements dependent on kε, which describes
the intrinsic complexity of the ε-approximate class boundaries of P .
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Chapter 1: Introduction1

In the context of non-parametric classification in machine learning, we are2

given a training set P which consists of n points in a metric space (X , d), where3

P ⊆ X and metric d : X 2 → R+ defines the distance between any two points in X .4

Additionally, this training set P is partitioned into a finite set of classes, meaning5

that each point p ∈ P is assigned a label l(p) that indicates the class to which p6

belongs to. Finally, given an unlabeled query point q ∈ X , the goal of a classifier is7

to predict q’s label using the training set P .8

The nearest-neighbor rule (or nearest-neighbor classifier) is among the best-9

known classification techniques [1]. It classifies any query point q ∈ X with the10

label of its closest point in P according to the distance function d. This idea can11

be generalized to predict q’s class using its first k nearest-neighbors in P , instead of12

only one. Such generalized approach is known to as the k nearest-neighbor classifier,13

or simply k-NN. Throughout this book, we focus exclusively on the 1-NN classifier.14

Despite being conceptually simple, numerous results show that the nearest-15

neighbor rule exhibits good classification accuracy both experimentally and theoreti-16

cally [2–4]. In fact, its probability of error is bounded by twice the Bayes probability17

of error, which is the best achievable error by any theoretical classifier. However, the18

nearest-neighbor rule is often criticized for its high space and time complexities, as19

a straightforward implementation of this approach implies storing all the points of20

P to answer such queries. This would therefore make the nearest-neighbor rule be21

highly dependent on the size n of the training set P .22

This drawback raises an important question of whether it is possible to reduce23

the dependency of the nearest-neighbor classifier, from n to some smaller parameter.24

In this thesis, we proof this is indeed possible, proposing new approaches for nearest-25

neighbor classification that are dependent on some parameter k, where commonly26

k ≪ n on real training sets. This parameter is defined as the number of border27

points of P , and depicts the inherent complexity of the boundaries between points28

of different classes in the training set.29

Some of the approaches presented in this thesis deal with computing a subset30

of P whose size is dependent on k, which can then be used by the nearest-neighbor31

rule to answer classification queries, instead of using the entire training set. These32

are known as training set reduction techniques, and are explored in Chapters 3 to 5.33

Additionally, Chapter 6 explores a completely different approach, proposing a tailor-34

made data structure that can directly answer nearest-neighbor classification queries,35

thus bypassing the preprocessing step of having to reduce the training set. In36

terms of the underlying metric space, Chapters 3, 4 and 6 assume P lies in Rd for37
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constant dimension d, and using ℓ2 as the distance metric, while Chapter 5 deals with38

training sets in general metric spaces. Finally, in terms of the model of computation,39

Chapters 3 and 4 assume that nearest-neighbor queries are computed exactly, while40

Chapters 5 and 6 allow multiplicative approximation errors when answering such41

classification queries.42

Preliminaries43

The set of border points of the training set P are those that define the “bound-44

aries” between points of different classes, and whose omission from the training set45

would imply the misclassification of some query point in X . Formally, two points46

p, p̂ ∈ P are border points of P if they belong to different classes, and there exist47

some point q ∈ X such that q is equidistant to both p and p̂, and no other point of48

P is closer to q than these two points.49

For any given point p ∈ P , define an enemy of p to be any point of P in a50

different class than p. The nearest-enemy of p, denoted ne(p), is the closest such51

point according to metric d. Finally, define the nearest-enemy distance of p to be52

dne(p) = d(p, ne(p)), and the nearest-enemy ball of p to be the metric ball centered at53

p with radius dne(p). Let κ be the number of distinct nearest-enemy points of P , that54

is, the cardinality of the set {ne(p) | p ∈ P}. Similarly, denote the nearest-neighbor55

of p as nn(p), and the nearest-neighbor distance as dnn(p) = d(p, nn(p)).56

In fact, in this thesis we prove that every nearest-enemy of P is also a border57

point, implying that κ ≤ k. Thus, we will use these two parameters to analyze our58

proposed approaches, showing their dependency on the complexity of the boundaries59

between points of different classes in P .60

Through a suitable uniform scaling, we may assume that the diameter of P61

(i.e., the maximum distance between any two points in the training set) is 1. The62

spread of P , denoted as ∆, is defined to be the ratio between the largest and smallest63

distances in P . Define the margin of P , denoted γ, to be the smallest nearest-enemy64

distance in P . Clearly, this implies that 1/γ ≤ ∆.65

Additionally, a metric space (X , d) is said to be doubling [5] if there exist some66

bounded value λ such that any metric ball of radius r can be covered with at most67

λ metric balls of radius r/2. Its doubling dimension is the base-2 logarithm of λ,68

denoted as ddim(X ) = log λ. Many natural metric spaces of interest are doubling,69

including d-dimensional Euclidean space whose doubling dimension is Θ(d).70

1.1 Training Set Reduction71

The idea behind training set reduction techniques is to select a subset of the72

original training set P , and then use this reduced set to answer any nearest-neighbor73

classification queries. Evidently, the goal is to select a subset as small as possible,74

subject to maintaining the classification accuracy of the nearest-neighbor classifier.75

By definition, if instead of applying the nearest-neighbor rule with the entire76

training set P we use the set of border points of P , the complexity of answering77
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classification queries is now dependent on k instead of n, while still obtaining the78

same classification for any query point in X . In other words, this approach would79

maintain the same boundaries between points of different classes, before and after80

reducing the training set. For this reason, algorithms for finding the set of border81

points of P are known as boundary preservation algorithms.82

For training sets P ⊂ R2 in the Euclidean plane, Bremner et al. [6] proposed83

an output-sensitive algorithm for finding the set of border points of P in O(n log k)84

worst-case time. For almost three decades, the best result for training sets in Rd,85

assuming constant d, was Clarkson’s [7] algorithm that runs in O(min (n3, kn2 log n))86

worst-case time. Recently, Eppstein [8] proposed a significantly faster algorithm for87

the d-dimensional Euclidean case, which runs in O(n2 + nk2) worst-case time. In88

Chapter 3, we propose an improvement over Eppstein’s algorithm [8] to compute the89

set of border points of any training set P ⊂ Rd, where dimension d is assumed to be90

constant. Moreover, our algorithm reduces the complexity of computing the set of91

border points of P to O(nk2) worst-case time, where k is the size of such subset.92

(a) Set P (104 pts)
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(b) CNN (281 pts)
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(c) FCNN (222 pts)
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(d) MSS (272 pts)
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(e) NET (875 pts)
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(f) SFCNN (220 pts)
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(g) RSS (233 pts)
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(h) VSS (233 pts)

Figure 1.1: Illustrative example of the subsets selected by different condensation
algorithms from an initial training set P in R2 of 104 points. It includes existing
algorithms (b)-(e), along with new algorithms introduced by our work (f)-(h).

Another approach for training set reduction is called condensation. Formally,93

the problem of nearest-neighbor condensation consists of finding a consistent subset94

of P , where a subset R ⊆ P is said to be consistent [9] if and only if for every point95

p ∈ P its nearest-neighbor in R is of the same class as p. Intuitively, R is consistent96

if and only if all points of P are correctly classified using the nearest-neighbor rule97

over R. Compared to the boundary preservation techniques, using consistent subsets98

only guarantees the correct classification of the points of P , while using the set of99

border points extends this guarantee for every point of X .100
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While finding subsets of P that are consistent can be done efficiently, computing101

minimum cardinality consistent subsets is much harder. In fact, it is known to be an102

NP-hard problem [10–12], even to approximate within practical factors. Therefore,103

most research has focused on proposing practical heuristics to find either consistent104

subsets (for comprehensive surveys, see e.g., [13–15]). Some of the best know heuristic105

algorithms for this problem are known as CNN [9], FCNN [16], and MSS [17], the last106

two being considered state-of-the-art for computing consistent subsets in O(n2) time.107

However, while these heuristics have been extensively studied experimentally [18],108

theoretical results are scarce, with no upper-bounds known for the size of the subsets109

selected by these algorithms. In Chapter 4, we present the first theoretical results on110

upper-bounding the subset sizes of condensation algorithms. In particular, we show111

that FCNN and MSS can not be bounded in terms of k, and propose new quadratic-112

time algorithms called SFCNN, RSS and VSS, that can be effectively upper-bounded113

in terms of k (see Figure 1.1 for illustrative examples on their selected subsets).114

So far, these approaches for training set reduction have made a key assumption:115

that after reduction, the nearest-neighbor rule will answer classification queries (i.e.,116

compute nearest-neighbors on the reduced training set) exactly. However, in practice,117

nearest-neighbors are frequently computed approximately rather than exactly. In118

this context, given an approximation parameter ε ∈ [0, 1], a query point q ∈ X can119

be assigned the class of any point of P whose distance to q is at most 1+ε times the120

distance from q to its true nearest-neighbor. Sadly, the classification guarantees given121

by both boundary preservation and condensation algorithms, rely on the assumption122

that nearest-neighbors are computed exactly, and break when approximate query123

answers are allowed. In Chapter 5, we propose a framework for training set reduction124

that is sensitive to these approximations, along with a characterization of ε-coresets125

for the problem of nearest-neighbor classification.126

1.2 Nearest-Neighbor Search vs Classification127

Due to its conceptual closeness, the problem of nearest-neighbor classification128

is extremely related to the problem of nearest-neighbor search. Evidently, one can129

reduce the problem of classifying a query point q ∈ X via the nearest-neighbor rule, to130

simply compute q’s closest point in the training set, and assign q to the class of such131

point. Unsurprisingly, this approach is standard for nearest-neighbor classification,132

and under such problem reduction, there are only two alternatives to improve the133

complexity of answering these classification queries. Either by reducing the training134

set (as explained in the previous section), or by improving the techniques to answer135

nearest-neighbor queries, which is a known and extensive line of research [19–22].136

However, there exist an alternative approach towards achieving more efficient137

nearest-neighbor classification. This would imply avoiding the reduction to the search138

problem, and instead having algorithms and data structures to directly compute139

the class of the nearest-neighbor of any given query point; i.e., without computing140

the nearest-neighbor itself. In computational geometry, this is usually known as the141

chromatic nearest-neighbor search problem.142
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In Chapter 6, we propose a tailor-made data structure for approximate nearest-143

neighbor classification (or approximate chromatic nearest-neighbor search), which we144

call the Chromatic AVD. Given a training set P in d-dimensional Euclidean space145

(assuming constant d and the ℓ2 metric) and an approximation parameter ε ∈ [0, 1
2
],146

we construct a quadtree-based partitioning of space to answer any classification147

query approximately. That is, for any query point q ∈ Rd this data structure returns148

the class of any of q’s valid ε-approximate nearest-neighbors in P . Moreover, the149

Chromatic AVD is designed as a simplification of state-of-the-art AVDs [20] for150

approximate nearest-neighbor search. Thus, reducing its dependency from n to a151

parameter kε that describes the complexity of the approximate class boundaries.152
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Chapter 2: Literature Review153

The problem of classification is of high relevance in the field of machine learning.154

It has motivated numerous approaches that are able to predict the class of a given155

query point, by constructing and using some model “trained” from a given training156

set. However, and despite the advent of more sophisticated techniques (e.g., support-157

vector machines [23] and deep neural networks [24]), nearest-neighbor classification158

is still widely used in practice [25–27], proving its value in constructing resilient159

defense strategies against adversarial [28] and poisoning [29] attacks, as well as in160

achieving interpretable and reliable classification models [30,31].161

Its importance has motivated diverse research in many fields, from statistics to162

computational geometry. In this book, we approach the nearest-neighbor classification163

problem from the perspective of computational geometry, leveraging algorithms, data164

structures, and analysis techniques from this field. This chapter delves into the most165

important concepts related to this classification technique, as well as the previous166

work on ways to improve its efficiency.167

2.1 Classification Boundaries168

The concept of boundaries in classification can be vague, as it depends on the169

particularities of the classification model being studied. The terms class boundaries,170

classification boundaries, and decision boundaries often refer to the same concept.171

Broadly speaking, they refer to the separation between two regions in space, such172

that the model of interest classifies points lying on either side of the boundary (i.e.,173

on each region) with different classes.174

In order to understand the class boundaries of the nearest-neighbor rule, we175

first need to introduce a well-known concept in computational geometry called176

Voronoi Diagrams. The Voronoi diagram of a point set P ⊆ X is a partition of the177

underlying space X into different regions called cells. Each of these Voronoi cells has178

an associated point p ∈ P (often call the site of the cell) such that for every point q179

inside of the cell, p is q’s closest point in P according to the distance metric d.180

Throughout this book, all the figures depicting Voronoi diagrams will assume181

that the underlying metric space is Euclidean, and the distance function is the ℓ2182

metric. Here, the Voronoi cell of each point p ∈ P is a convex region of Rd, and can183

be described as the intersection of n− 1 closed halfspaces, each being the halfspace184

containing p that is bounded by the bisector between p and another point of P .185

Two sites p, p̂ ∈ P are said to be Delaunay neighbors, if and only if there exists186

a point q in the underlying space that is part of the cells of both p and p̂. That is, if q187
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is equidistant to both p and p̂, and no other points of P are closer to q. This defines188

the edges of the Delaunay triangulation of P , which is characterized as the dual189

graph of the Voronoi Diagram. Moreover, we can define the boundaries between the190

Voronoi cells of P as the union of all such points q in the space that are equidistant191

to at least two points/sites of P .192

When considering the classes of these points, we can introduce a few useful193

concept. First, any edge of the Delaunay triangulation of P that connects two points194

of different classes is called a bichromatic edge. Additionally, we can define the class195

boundaries of the nearest-neighbor rule similarly to the definition of the boundaries196

between the Voronoi cells of P . We say the class boundaries of P are the union of197

points q in the underlying space that are equidistant to at least two points of P from198

different classes. Intuitively, these boundaries separate different class regions, where199

each such region is defined as the union of neighboring Voronoi cells corresponding to200

points of the same class. See Figure 2.1 for an illustrative example on these concepts.201

(a) Class regions of P (b) Border points of P (c) Nearest-enemies of P

Figure 2.1: Example of a training set P ∈ R2 with points of three classes: red, blue
and yellow. (a) shows the different class regions defined by the union of adjacent
Voronoi cells of the same class, (b) highlights the border points of P , while (c)
highlights the nearest-enemy points of P . Both (a) and (b) draw the class boundaries
with solid black lines.

We say that the class boundaries of P are defined by a subset of the training set202

called the set of border points of P . Basically, these border points are the endpoints203

of all the bichromatic edges of the Delaunay triangulation of P . Formally, two points204

p, p̂ ∈ P are border points of P if they belong to different classes, and there exist205

some point q in the underlying space such that q is equidistant to both p and p̂, and206

no other point of P is closer to q than these two points. See Figure 2.1a and 2.1b for207

an example of a training set P ⊂ R2 and its set of border points. Throughout, we208

denote k to be the total number of border points in the training set. Unsurprisingly,209

k is key in understanding the complexity of the class boundaries of P , making it an210

ideal candidate to analyze the complexity of the classification problem.211

Another concept that is useful to characterize the class boundaries of P is that212
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of nearest-enemy points. Just as defined in Chapter 1, we say the nearest-enemy1 of213

a point p ∈ P (denoted by ne(p)) is p’s closest point in P of different class. Then,214

we let κ be the number of distinct nearest-enemy points of P , that is, the cardinality215

of the set {ne(p) | p ∈ P}. See an example of this concept in Figure 2.1c. While not216

immediately obvious, we are able to (see Section 4.4) that every nearest-enemy point217

of P is a also border point of P . Therefore, the set of nearest-enemy points is a subset218

of those points defining the class boundaries, and can then be used to characterize219

its complexity.220

2.2 Boundary Preservation221

In this section, we review known algorithms for finding the set of border points222

of the training set P , also referred to as boundary preservation algorithms. Note that223

for each of these algorithms, P is assumed to lie in d-dimensional Euclidean space224

(i.e., P ⊂ Rd), and the distance function is assumed to be the ℓ2 metric.225

2.2.1 Clarkson’s algorithm226

In 1994, Clarkson [7] proposed the first algorithm to compute the set of border227

points of a training set P in Rd. His algorithm runs in O(min (n3, kn2 log n)) time, by228

leveraging linear programming formulations along with output-sensitive techniques229

to compute extreme points.230

Starting with an empty selection, the algorithm incrementally adds newly found231

border points to its current selection. To achieve this, it performs a “non-borderness”232

test on every point p of the training set. This test can only decide with certainty if233

p is not a border point, but not otherwise. However, if the test’s result is uncertain,234

Clarkson proposes a method to find some other point p̂ ∈ P that is certainly a border235

point. Further details on this algorithm are left for the interested reader, and can be236

found in Section 5 of Clarkson’s paper.237

2.2.2 Eppstein’s algorithm238

In early 2022, Eppstein [8] proposed a new algorithm to find the set of border239

points of a given training set P in Rd that runs in O(n2 + nk2) worst-case time.240

The algorithm’s simplicity is striking, specially when considering the small progress241

achieved for this problem in the last three decades. Intuitively, the algorithm works242

somewhat as an implicit graph traversal, where the border points of P are nodes in243

this graph, connected by certain implicit edges. Formally, the algorithm begins by244

selecting some initial set of border points of P , one point from every class region.245

From here, it uses a series of subroutines (which we group together and denote as the246

“inversion method”) to find the remaining border points of P . To better understand247

this algorithm, we study its two phases: the initialization and search phases.248

1This concept was first introduced by Dasarathy [32] in 1995 under the name of nearest unlike
neighbors (or NUN), and was later renamed by Wilson & Martinez [33] in 1997 as nearest-enemies.
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The initialization phase consists of finding a subset of points of P , such that249

all these must be border points, and there is at least one point for every class region250

of P . Eppstein’s approach to find these points is to compute the Minimum Spanning251

Tree (MST) of P , identify the bichromatic edges of this MST, and then select the252

endpoints of all such edges. Evidently, this phase takes a total of O(n2) time.253

The search phase completes the algorithm, and consists of finding all the254

remaining border point of the training set. This phase iterates over all the currently255

selected points, and for each of these points p, it performs the inversion method on p,256

identifying a subset of border points that are “visible” by p. These are then selected257

by the algorithm, and the search continues. Basically, the inversion method unveils258

the edges of some implicit graph that are incident on p, allowing the algorithm to259

fully traverse this implicit graph. Once the inversion method has been applied on260

every selected point, the algorithm terminates with the guarantee of having selected261

all the border points of P . Each call of the inversion method takes O(nk) time,262

making the total runtime of this phase being O(nk2).263

It is important to note that Eppstein’s algorithm works under the assumption264

that this implicit graph can have multiple connected components. Therefore, the265

initialization phase looks to select at least one point on every connected component,266

to guarantee that all the border points will eventually be discovered by the algorithm.267

In Chapter 3, we further improve Eppstein’s algorithm by showing that in fact, this268

implicit graph has a single connected component. Hence, rendering the initialization269

phase unnecessary, and reducing the total runtime to O(nk2).270

2.2.3 Bremner et al.’s algorithm271

This is a special case algorithm intended only for the planar case; i.e., then the272

training set lies in R2. It was proposed by Bremner et al. [6] in 2003, as the result of273

a research workshop, and has a runtime of O(n log k).274

Their algorithm consists of two levels. First, the higher level algorithm, which275

consists of repeatedly guessing the value of k, and running a lower level algorithm276

under this assumption. This lower level algorithm works as follows: given some value277

m, if m ≥ k it finds the set of all border points of P , and otherwise it fails. Moreover,278

it does this within O((m2 + n) logm) time. Therefore, by repeatedly using values of279

m = 22
i
, with i = 0, 1, 2, . . . , ⌈log log k⌉), and stopping when m ≥ k or m ≥

√
n, the280

total runtime of the higher level algorithm equals O(n log k).281

Interestingly, the lower level algorithm works in a similar way to Eppstein’s282

algorithm. First, it finds an initial bichromatic edge of the Delaunay triangulation283

of P (i.e., identifying two border points), and then follows iteratively by applying a284

series of “pivot operations” on the border points found so far, to unveil new border285

points of P . If at some point, the algorithm finds more than m border points, it fails286

as the assumption that m ≥ k is false. Otherwise, the algorithm terminates with the287

guarantee of having found all the border points of P .288

The remaining details of this algorithm are left to the reader, and can be found289

in the original paper [6]. However, we describe the pivot operation in higher detail, as290

it would be leveraged throughout this book as a useful tool in some of our algorithms291
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and analyses. Basically, any pivot operation receives three parameters: a point p,292

a vector v⃗, and a set of points S ⊂ Rd. Intuitively, the pivot operation grows an293

empty ball with p on its surface and its center on the direction of v⃗, until the ball294

hits a point of p̂ ∈ S. Then, the operation returns point p̂. Despite its simplicity,295

this operation is a useful tool to find border points, as seen in the remaining of this296

book.297

2.3 Nearest-Neighbor Condensation298

Essentially, the problem of nearest-neighbor condensation consists of selecting299

some subset of the original training set P , subject to the classification accuracy of300

the nearest-neighbor rule not being “greatly reduced” when replacing the original301

training set by this subset of points. One way of achieving this would be to simply302

select the set of border points of P via a boundary preserving algorithm. However,303

this approach is too strict, which has lead to the introduction of more relaxed criteria304

for the purpose of condensation.305

In this section, we explore the main criteria used for condensation, hardness306

results, as well as the most relevant algorithms proposed for this problem.307

2.3.1 Criteria308

The central definition to understand the problem of condensation is that of309

consistent subsets, proposed by Hart [9] in 1968. We say a subset R ⊆ P is consistent310

if and only if for every point p ∈ P its nearest-neighbor in R is of the same class as311

p. Intuitively, this means that any subset R is consistent if and only if all points of312

P are correctly classified using the nearest-neighbor rule “trained” on R. That is,313

with a nearest-neighbor rule that answers queries by searching among the points in314

R, instead of searching among the points of the original training set P .315

Another criterion frequently used for condensation is known as selectiveness,316

and was proposed by Ritter et al. [34] in 1975. A subset R ⊆ P is said to be selective317

if and only if for all points p ∈ P its nearest-neighbor in R is closer to p than its318

nearest-enemy in P . Clearly selectiveness implies consistency, as the nearest-enemy319

distance in R of any point of P would at least be its nearest-enemy distance in P . In320

fact, selective subsets were introduced as a stricter version of consistency, hoping this321

would allow the existence of polynomial-time algorithms to find minimum cardinality322

selective subsets. As we will see in the following subsections, this would later be323

discovered to be impossible unless P=NP.324

Recall that none of these two criteria, namely consistency and selectiveness,325

imply that every query point in X would be correctly classified after condensation.326

Instead, they simply guarantee the correct classification of the points in P . The only327

techniques that guarantee correct classification of every query point are boundary328

preservation algorithms, as explored in Section 2.2. It is easy to see that any subset329

that preserves the class boundaries of P (i.e., the set of border points of P ) must be330

selective, and that any selective subset of P must also be consistent. Therefore, any331
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algorithm that finds subsets of P holding any of these properties is considered to be332

a condensation algorithm.333

2.3.2 Hardness Results334

Clearly the stricter notion of condensation, involving the full preservation of the335

class boundaries of P , can be achieved in polynomial-time as described in Section 2.2.336

The relaxation to the consistent and selective criteria imply that subsets holding337

these properties can be computed even faster. These subsets always exist, as P itself338

is both consistent and selective. Evidently, the more interesting research question339

deals with finding ideally small subsets of P under these two condensation criteria.340

Therefore, understanding the complexity of finding such subsets while minimiz-341

ing their sizes becomes of major relevance. It took close to 30 years since consistency342

was originally defined in 1968 for the first hardness results to appear, and it took343

another 30 years to close some of the remaining gaps into understanding the hardness344

of approximation for these problems.345

DenoteMin-CS andMin-SS to be the problems of finding minimum cardinality346

consistent and selective subsets of P , respectively, we know that these two problems347

are NP-hard to solve, and their decision versions are NP-complete [10–12]. Originally,348

Wilfong [10] proved this complexity for when P lies in Euclidean space, and restricting349

the result for Min-CS on training sets with at least 3 classes. These results were350

later generalized by Zukhba [11] and Khodamoradi et al. [12] for the cases when P351

has at least two classes, and also when it lies in some general metric space (X , d).352

Hardness of approximation results have also been proposed for this problem.353

The first result dates back to 2000, when Nock & Sebban [35] found that unless NP ⊆354

DTIME(nlog logn), the Min-SS problem is NP-hard to approximate in polynomial-355

time within a factor of (1− o(1)) lnn. Later in 2014, Gottlieb et al. [36] found that356

the Min-CS problem is NP-hard to approximate in polynomial-time within a factor357

of 2(ddim(X ) log 1/γ)1−o(1)

, where ddim(X ) is defined as the doubling dimension of the358

space X , and γ is the margin or minimum nearest-enemy distance of P .359

More recently, Chitnis [37] presented the first results on the parameterized360

complexity of the decision version of Min-CS. This version of the problem decides361

whether there exists a consistent subset of P of size ≤ m, assuming P ⊂ Zd and ℓp362

being the distance metric. Then, Chitnis proves two main results. First, that this363

problem is W[1]-hard parameterized by m+d, meaning that unless FPT=W[1], there364

is no f(m, d) ·nO(1) time algorithm for any computable function f . Additionally, that365

under the Exponential Time Hypothesis (ETH) there is no d ≥ 2 and computable366

function f such that this problem can be solved in f(m, d) · no(m1−1/d) time.367

2.3.3 Algorithms368

Due to the importance of this problem, numerous algorithmic approaches have369

been proposed to compute such subsets. These include some optimal algorithms,370

as well as some case-specific, and approximation algorithms. However, due to the371

complexity of computing even close to optimal solutions for the condensation problem,372
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most research has focused on proposing practical heuristics to find either consistent373

or selective subsets of P . For comprehensive surveys on these heuristics, see [13–15].374

Here we review some of the most relevant algorithms proposed for this problem,375

in chronological order. In 1968, along with the definition of consistency, Hart [9]376

proposed the CNN (Condensed Nearest-Neighbor) algorithm to compute consistent377

subsets of P . Even though it has been widely used in the literature, CNN suffers378

from several drawbacks: its running time is cubic in the worst-case, and the resulting379

subset is order-dependent, meaning that the points selected are determined by the380

order in which they are considered by the algorithm. Additionally, CNN tends to381

select points far from the class boundaries, which is usually undesirable as these382

points are unlikely to contribute to such boundaries. To combat this, Gates [38]383

proposed the RNN (Reduced Nearest-Neighbor) algorithm in 1972, which consists384

of first running CNN and then proceed with a postprocessing technique to further385

reduce the subset. While this resolves the issue of selecting points far from the class386

boundaries, this approach still runs in worst-case cubic time and is order-dependent.387

Also in 1975, Ritter et al. [34] proposed the SNN (Selective Nearest-Neighbor)388

algorithm, along with the definition of selective subsets. The authors hoped it would389

be possible to compute minimum cardinality selective subsets in polynomial time,390

and propose this algorithm to find them. Unsurprisingly, it was later proved that its391

runtime is worst-case exponential [10], even though Wilson & Martinez [33] claimed392

that the algorithm’s average runtime is quadratic.393

The new century saw a big leap in heuristic approaches for condensation. In394

particular, two algorithms stand out: MSS (Modified Selective Subset) proposed by395

Barandela et al. [17] in 2005, and FCNN (Fast CNN) proposed by Angiulli [16] in396

2007. Both algorithms compute consistent and selective subsets, respectively. But397

more importantly, both algorithms run in quadratic worst-case time, and are order-398

independent. These characteristics, together with their ease of implementation, and399

specially, their exceptional performance in practice, have established these algorithms400

as state-of-the-art for condensation.401

In 2014, Gottlieb et al. [36] proposed an approximation algorithm called NET,402

along with the almost matching hardness lower-bounds described in Section 2.3.2.403

The algorithm is fairly simple, consisting on just computing a γ-net of P where γ is404

P ’s margin. This clearly results in a consistent subset, which can be proven to be a405

tight approximation of the Min-CS problem. However, in practice, γ tends to be406

small in real training sets, thus making the subsets selected by the NET algorithm407

of much higher cardinality than those selected by state-of-the-art heuristics.408

Recently, in 2019 Biniaz et al. [39] proposed a subexponential-time algorithm409

for finding minimum cardinality consistent subsets of point sets P ⊂ R2 in the410

Euclidean plane, along with other case-specific algorithms for special instances of the411

problem in R2. Their main algorithm runs in nO(
√
m) where m is the size of minimum412

cardinality consistent of P , which after the hardness results presented by Chitnis [37]413

in 2022, it has been proven to be asymptotically tight for the planar case.414

It is important to note that, while the heuristics described in this section (i.e.,415

CNN, RNN, FCNN, and MSS) have been extensively studied experimentally [18],416

theoretical results are scarce. Before our work described in Chapter 4, little was417
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known about any theoretical guarantees on the size of their selected subsets. There418

was a clear gap between practical heuristics without any theoretical guarantee, and419

approximation algorithms with poor performance in practice.420

2.4 Nearest-Neighbor Search421

Given a set P ⊆ X of n points in a metric space (X , d) and a query point q ∈ X ,422

the goal of the nearest-neighbor search problem is to compute q’s closest point in P423

according to the distance function d. The most common assumption for this problem424

is that P is given initially to be preprocessed into a data structure, while query points425

are later received as a stream to be answered using the prepocessed data structure.426

In this section, we discuss different techniques to compute nearest-neighbors,427

either exactly or approximately. Additionally, we consider the related problem of428

chromatic nearest-neighbor search, which assuming that P is a training set (i.e., that429

each point in P is labeled), its goal is to compute the class of each query point’s430

nearest-neighbor, and not necessarily its nearest-neighbor itself.431

2.4.1 Exact Search432

There are two main approaches to compute nearest-neighbors exactly. The433

first, via exhaustive search over the entire point set P , which evidently implies linear434

query times and storage. Otherwise, the approaches usually apply point location435

algorithms over space partitioning data structures. For the low dimensional case436

of d ≤ 2, it is possible to obtain O(log n) query times and linear storage. Sadly,437

when the dimension is d > 2, the “curse of dimensionality” starts to kick in, and438

the overhead between query times and storage requirements grows increasingly439

fast. On either extreme, this means that we have solutions with logarithmic query440

time but roughly O(nd/2) storage [40], or solutions with linear storage but barely441

sublinear query times [41]. Therefore, the applicability of exact nearest-neighbor442

search becomes severely limited for high-dimensional data.443

2.4.2 Approximate Search444

In practice, nearest-neighbors are often computed approximately rather than445

exactly, as this relaxation allows for further improvements on query time and storage446

requirements. Formally, given an approximation parameter ε ∈ [0, 1], the problem of447

ε-approximate nearest-neighbor searching (or ε-ANN) deals with computing a point448

p ∈ P whose distance from the query point q is within a factor of 1+ ε of q’s distance449

to its nearest-neighbor in P . We say that any such point p is a valid ε-approximate450

nearest-neighbor of q, and can be retrived as a valid answer to q’s query.451

This problem has been studied extensively, both theoretically [19–22, 42, 43]452

and from a practical standpoint [44,45]. When the number of dimensions is low, most453

techniques involve some sort of space partitioning; e.g., kd-Trees [46], Quadtrees [47–454

49], and Approximate Voronoi Diagrams [19,20,43]. Otherwise, alternatives for high-455

dimensional data include hashing techniques like Locality-Sensitive Hashing [21,50],456
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and proximity graph techniques like Hierarchical Navigable Small Worlds graphs [22].457

However, throughout this dissertation we focus on low-dimensional data approaches,458

as many of our results have exponential dependency on the number of dimensions.459

2.4.3 Chromatic Search460

Evidently, given some query point q, to classify q with the nearest-neighbor461

rule involves retrieving the class of q’s nearest-neighbor in the training set. Note that462

this is slightly different from retrieving the nearest-neighbor itself. Potentially, this463

difference opens the possibility of improvements over the standard search problem. In464

the context of computational geometry, this is sometimes referred to as the problem465

of chromatic nearest-neighbor search, where classes are intuitively described as colors.466

Evidently, to answer exact chromatic queries there is one clear approach: to467

compute the set of border points of the training set, and use any of the techniques468

described in Section 2.4.1 to answer exact search queries over this subset. Despite469

having increased preprocessing times, this approach would lead to query times and470

storage requirements dependent on k instead of n. However, it is unclear if it is471

possible to achieve similar results without having to recur to boundary preservation472

algorithms and the reduction to the standard search problem.473

However, this is indeed possible in the approximate setting. Some work has474

been done along these lines by Mount et al. [51], showing that when query points475

are far from the class boundaries and surrounded by points of the same class, query476

times can be significantly reduced. However, these query times are still dependent on477

n. Moreover, the data structure itself dates back to 2000, and is based on standard478

search techniques of the time. Evidently, many improvements have been achieved in479

the last two decades on approximate nearest-neighbor searching, making this data480

structure clearly outdated.481

In Chapter 6, we propose new data structure for this problem called Chromatic482

AVD, thought as a simplification of state-of-the-art AVDs [20] from 2017. This new483

approach has query times and storage dependencies on a parameter kε that describes484

the complexity of the approximate class boundaries (similarly to how k describes485

the complexity of the exact class boundaries).486
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Chapter 3: Boundary Preserving Algorithms487

3.1 Introduction488

As previously discussed, a common approach to reduce the dependency on n of489

the nearest-neighbor rule is to reduce the training set itself. However, most training490

set reduction techniques offer limited guarantees on the effect that this reduction491

makes on the accuracy of the classifier. Only a handful of works [6–8] have proposed492

algorithms that guarantee the same classification of every query point, before and493

after the reduction took place. These are called boundary preserving algorithms, and494

are the focus of this chapter.495

The results presented on this chapter can also be found here [52].496

(a) Original training set P (b) Border points of P

Figure 3.1: On the left, a training set P ∈ R2 with points of three classes: red, blue
and yellow. On the right, a subset of these points corresponding to the set of border
points of P . The solid black lines highlight the boundaries of P between points of
different classes. By definition, the class boundaries remain the same in both cases.

While other problems in the realm of training set reduction are NP-hard [10–12]497

to solve exactly (e.g., those of finding minimum cardinality consistent subsets and498

selective subsets), the problem of preserving the class boundaries of the nearest-499

neighbor rule is tractable. As discussed in Sections 2.1 and 2.2, this problem is500

equivalent to that of finding the set of border points of P .501

The set of border points of the training set P are those that define the boundaries502
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between points of different classes, and whose omission from the training set would503

imply the misclassification of some query points in Rd. Formally, as seen in Section 2.1,504

two points p, p̂ ∈ P are border points of P if they belong to different classes, and505

there exist some point q ∈ Rd such that q is equidistant to both p and p̂, and no506

other point of P is closer to q than these two points (i.e., the empty ball property of507

Voronoi Diagrams). See Figure 3.1 for an example of a training set P in R2 and its508

set of border points. Throughout, we let k denote the total number of border points509

in the training set. By definition, if instead of applying the nearest-neighbor rule510

with the entire training set P we use the set of border points of P , its dependency is511

reduced from n to k, while still obtaining the same classification for any query point512

in Rd. This becomes particularly relevant for applications where k ≪ n.513

For training sets P ⊂ R2 in 2-dimensional Euclidean space, Bremner et al. [6]514

proposed an output-sensitive algorithm for finding the set of border points of P in515

O(n log k) worst-case time. However, how to generalize this algorithm for higher516

dimensions remained unclear. Until very recently, the best result for the higher517

dimensional case was that of Clarkson [7]. He proposed an algorithm to find the518

set of border points of P ⊂ Rd, with bounded d, that runs in O(min (n3, kn2 log n))519

worst-case time. For almost three decades, this remained the best result for training520

sets in Rd. Recently, Eppstein [8] proposed a significantly faster algorithm for the521

d-dimensional Euclidean case, which runs in O(n2 + nk2) worst-case time.522

In this chapter, we propose an improvement over Eppstein’s algorithm [8] to523

compute the set of border points of any training set P ⊂ Rd, where dimension524

d is assumed to be constant. While the original algorithm computes such set in525

O(n2 + nk2) time, where k is the number of border points of P , our new algorithm526

computes the same set in O(nk2) time.527

3.2 Eppstein’s algorithm528

This algorithm is strikingly simple, yet full of interesting ideas (see a formal529

description in Algorithm 1), and it works as follows: it begins by selecting an initial530

set of border points of P , one point from every class region. From here, the algorithm531

uses a series of subroutines which we will group together and denote as the “inversion532

method”, to find the remaining border points of P . Thus, the algorithm can be533

naturally split into two phases: the initialization of R with some border points, and534

the search process for the remaining border points of P .535

3.2.1 The Initialization Phase536

The initialization phase (lines 1–2 of Algorithm 1) involves finding a subset of537

border points such that at least one point for every class region is selected. Eppstein538

observes that this can be achieved by computing the Minimum Spanning Tree (MST)539

of P , identifying the edges of the MST that connect points of different classes540

(denoted as bichromatic edges), and selecting the endpoints of all such edges. This541

phase takes O(n2) time, but we will prove that it is not necessary.542

16



Algorithm 1: Eppstein’s algorithm [8] to find the set of border points of P .

Input: Initial training set P
Output: The set of border points of P

1 Let M be the MST of P
2 Initialize R with the end points of every bichromatic edge of M
3 foreach p ∈ R do
4 Let c be p’s class and Pc be the points of P that belong to class c
5 Let Sp be the inverted points of P \ Pc around p
6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

3.2.2 The Search Phase543

The search phase (lines 3–6 of Algorithm 1) is in charge of finding every544

remaining border point of P . This phase iterates over all selected points, and for545

each such point p, it performs what we call the inversion method. This method546

identifies a subset of border points of P , which are added to R. Once the algorithm547

has done the inversion method on every point of R, it terminates with the guarantee548

of having selected every border point of P .549

3.2.3 The Inversion Method550

Given any point p ∈ P , the inversion method on p is described in lines 4–6 of551

Algorithm 1. Let c be p’s class, and Pc be the points of P that belong to class c, the552

inversion method on p consists of: (i) inverting all points of P \ Pc around a ball553

centered at p (call the set of these inverted points as Sp and include p itself in the554

set), (ii) computing the set of extreme points of Sp, and finally (iii) returning the set555

Ep of those points of P that correspond to the extreme points of Sp before inversion.556

For a detailed description and proof of correctness of this method, we refer the reader557

to Eppstein’s paper [8]. However, for the purposes of this chapter we only need a558

property presented in Lemma 3 of [8]: the points in Ep reported by the inversion559

method are the Delaunay neighbors of p with respect to the set (P \ Pc) ∪ {p}.560

Every call of the inversion method takes O(nk) time by leveraging well-known561

output-sensitive algorithms for computing extreme points. Given that this method562

is called exclusively on every border point of the training set, this yields a total of563

O(nk2) time to complete the search phase of the algorithm. Overall, this implies that564

Eppstein’s algorithm computes the entire set of border points of P in O(n2 + nk2)565

worst-case time.566

3.3 A Simpler Initialization567

We propose a simple modification to Eppstein’s algorithm, which avoids the568

step of computing the MST of the training set P , along with the subsequent selection569
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of bichromatic edges to produce the initial subset of border points.570

Instead, we simply start the search process with any arbitrary point of P . The571

rest of the algorithm remains virtually unchanged (see Algorithm 2 for a formal572

description). We show that this new approach is not only correct, meaning that573

it only finds border points of P , but also complete, as all border points of P are574

eventually found by our algorithm. Additionally, by avoiding the main bottleneck of575

the original algorithm, our new algorithm computes the same result in O(nk2) time,576

eliminating the O(n2) term.577

Algorithm 2: New algorithm to find the set of border points of P .

Input: Initial training set P
Output: The set of border points of P

1 Let s be any “seed” point from P
2 R← ϕ
3 foreach p ∈ R ∪ {s} do
4 Let c be p’s class and Pc be the points of P that belong to class c
5 Let Sp be the inverted points of P \ Pc around p
6 Find all extreme points of Sp and their corresponding original points Ep

7 R← R ∪ Ep

8 return R

Before proceeding, it is useful to explore why Eppstein’s algorithm computes578

the MST of the training set P . First, note that the original algorithm only applies579

the inversion method on border points of P . In fact, Eppstein’s correctness proof580

relies on it: Lemma 6 in [8] proves that all points in Ep are border points by assuming581

that point p is also a border point. From the description of our algorithm, note that582

we initially apply the inversion method on a “seed” point s, which might not be a583

border point. Therefore, we need to generalize Lemma 6 in [8] for the case where p is584

not a border point of P . Additionally, using the points from all bichromatic pairs of585

the MST of P guarantees that Eppstein’s algorithm starts the search phase with at586

least one point from every boundary of P . Eppstein’s completeness proof shows that587

the search phase can then “move along” any given boundary and eventually select588

all its defining points. We show that the search process is far more powerful, and589

can even “jump” between nearby boundaries, thus rendering the MST computation590

unnecessary.591

The following description outlines the necessary steps to prove both the correct-592

ness and completeness of our new algorithm, which are unfolded in the rest of this593

section. (i) By applying the inversion method to any point of P , not necessarily a594

border point, we must prove that all reported points are border points of P . This is595

established in Lemma 3.1, generalizing the statement of Lemma 6 of [8] for non-border596

points. (ii) For any class boundary of P , once the algorithm selects a point from597

this boundary, we must prove that it will eventually select every other point defining598

the same boundary. This is originally proved in Lemma 10 [8], however, we provide599

simpler proofs in Lemmas 3.2 and 3.3. (iii) Given two disconnected boundaries600
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separated by a class region, we must prove that if our algorithm selects a defining601

point from one of the boundaries, it will eventually select all defining points from602

both boundaries. This is established in Lemma 3.4.603

All together, these lemmas are used to prove the main result: the correct-604

ness, completeness, and worst-case time complexity of Algorithm 2, as stated in605

Theorems 3.5 and 3.6.606

(a) Training set P (b) Points from (P \Pc)∩{p} (c) q and p̂ are border points

Figure 3.2: Example showing the inversion method from any point p ∈ P . On the
left, training set P . The middle figure shows every non red point of P , except for p
itself, along with a point q selected from the inversion method on p. On the right,
we see evidence that q is a border point of P .

3.3.1 Correctness Proof607

Lemma 3.1. Let p ∈ P be any point of the training set. Then every point selected608

using the inversion method on p must be a border point of P .609

Proof. Let Ep be the points of P corresponding (before inversion) to the extreme610

points of Sp. According to Lemma 3 [8], every point in Ep is a neighbor of point611

p with respect to the Voronoi Diagram of set (P \ Pc) ∪ {p}. This implies that for612

every point q ∈ Ep other than p, there exists a ball such that both p and q are on its613

surface and no points of P \ Pc lie inside (see Figures 3.2a and 3.2b). We can now614

leverage similar techniques to the ones described in [6], to find a “witness” point to615

the hypothesis that q must be a border point of P .616

Recall that the empty ball we just described, as illustrated in Figure 3.2b, is617

empty from points of P \ Pc. However, there might be points of Pc inside. And618

moreover, we know that at least one point of Pc, point p, lies on its surface. Now,619

let r be the center of this ball, we grow an empty ball, this time with respect to620

the entire training set P , such that its center lies on the line qr and point q is on621

its surface (see Figure 3.2c). This ball will grow until it hits another point p̂ of P ,622

which we are guaranteed it will be of the same class as point p, and thus, of different623
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class as point q. Finally, we have just found an empty ball with respect to P , which624

has points q and p̂ on its surface, and were the class of both points differ. Therefore,625

this implies that q is a border point of P .626

(a) (b)

Figure 3.3: By definition, any two adjacent walls w1 and w2 of the Voronoi Diagram
of P hold the empty ball property with the points that define them. When these
walls are part of the class boundaries of P , the points that define them belong to at
least two classes.

3.3.2 Completeness Proof627

Before continuing, we need to formally define a few concepts. First, we define628

a wall of P as any (d− 1)-dimensional face of the Voronoi Diagram of P . By known629

properties of these structures, every wall w is defined by two distinct points p, q ∈ P630

such that any point on w has p and q as its two equidistant nearest-neighbors in the631

training set. We say two walls are adjacent if their intersection is not empty. That632

is, if there exists a point in Rd with all the defining points of these two walls as its633

equidistant nearest-neighbors in P .634

Additionally, we define a class boundary (or just boundary) of P as the union635

of adjacent walls, where each of these walls is defined by two points of different636

classes. Similarly, we define a class region of P as the union of adjacent Voronoi cells637

whose defining points belong to the same class. Based on these definitions, note that638

class boundaries are the ones that separate different class regions of P . Figure 3.4639

illustrates a training set in R2 with points of three classes, whose Voronoi Diagram640

describes five class regions and two class boundaries.641

Lemma 3.2. Let w1 and w2 be two adjacent walls in a class boundary of P . If the642

algorithm selects one of the points defining one of these walls, it eventually selects643

the remaining points defining both walls.644

Proof. LetW be the set of points defining both walls w1 and w2 (see Figure 3.3). By645

definition, these two walls of the Voronoi Diagram of P are adjacent if there exists646
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an empty ball with all the points of W on its surface. Knowing these two walls are647

part of the class boundaries of P , the set W must contain at least three points, and648

at least two classes.649

Let p1 be the first point of W to be selected by the algorithm. When doing the650

inversion method on point p1, the algorithm will select all points of W of different651

class than p1, of which we know there is at least one. Let p2 be one such point.652

Finally, when doing the inversion method on point p2, the algorithm will select653

the remaining points of W of the same class as p1. Therefore, all points of W will654

eventually be selected by the algorithm.655

Figure 3.4: A training set with five class regions (one blue, two red, and two yellow
regions), along with two disconnected class boundaries that separate all these regions.
On the left, a boundary separating the blue region and the leftmost yellow and
red regions. On the right, a boundary that separates the same blue region and the
remaining red and yellow regions.

Lemma 3.3. Let A be a class boundary of P , and assume that the algorithm selects656

one of the defining points of A. Then, the algorithm will eventually select all defining657

points of A.658

This comes as a direct consequence of Lemma 3.2 and the definition of a class659

boundary of the training set P . It remains to show what happens with boundaries660

that are disconnected.661

Lemma 3.4. Let A and B be two disconnected boundaries of P , such that there exists662

a path in space from A to B that is completely contained within one color region.663

Without loss of generality, say that every point that defines A has been selected by the664

algorithm. Then, every point that defines B must also be selected by the algorithm.665

Proof. Given these two disconnected boundaries A and B, we assume there exists666

some path P in Rd going from a wall of A to a wall of B, such that this path667

passes exclusively through a single class region (see Figure 3.5a). Without loss of668
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generality, say this is a red class region. Formally, for every point r along P we669

know r’s nearest-neighbor in P is red. Additionally, we assume that every border670

point defining A is selected by the algorithm. Hence, the proof consists of showing671

that there exists a sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩ such that672

(i) p1 and p̂m are defining points of A and B, respectively, (ii) p̂i is retrieved by the673

inversion method on pi, for every i ∈ [1,m], and finally (iii) points pi and p̂i−1 are674

both defining the same boundary, for every i ∈ [2,m]. See Figure 3.5 for a visual675

description.676

(a) (b) (c)

Figure 3.5: On the right, two disconnected boundaries A and B enclosing a red
class region. Thus, there is a path P completely contained inside such region and
connecting both boundaries. Other boundaries can also be enclosing the same region
and be near path P. On the left, we proof that there exists a sequence of points
that can be retrieved by calls to the inversion method, such that if points of A are
selected by the algorithm, eventually points of B will also be selected.

By definition, for every point r along path P we know r’s nearest-neighbor is a677

red point. Now, let’s delete every red point from consideration, including the ones678

defining boundaries A and B (see Figure 3.5b). This immediately implies that r’s679

nearest-neighbor just became a non-red border point of P . The fact that r’s new680

nearest-neighbor is a border point is easy to proof, using similar arguments as the681

ones laid down in Lemma 3.1. Additionally, these border points could be defining682

other boundaries apart from A and B, as seen in Figure 3.5b.683

Let’s start moving along the path P , starting from the end-point of the path684

that lies on a wall of boundary A. Then, find all ri points along the path, where each685

ri has two equidistant nearest-neighbors among the remaining non-red points, and686

both points define two distinct boundaries of P . We say there are m of these points687

along the path, and denote ri’s two equidistant nearest-neighbors as qi,1 and qi,2 for688

i ∈ [1,m]. Clearly, qi,1 and qi−1,2 are border points defining the same boundary, for689
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all i ∈ [2,m]. See Figure 3.5b, where the three black points along the path are the ri690

points, and the yellow and blue points on the surface of the balls centered at each ri691

are the corresponding qi,1 and qi,2 points.692

For now, let’s fix the analysis on one such ri point, and consider the ball693

centered at ri with both qi,1 and qi,2 on its surface. There must exist some other694

point qi,3 lying inside of ri’s ball, such that qi,3 is one of the deleted red points695

defining the same boundary as qi,1. It is now easy to see that there exist an empty696

ball, with respect to the set P \ Pred ∪ {qi,3}, with both qi,3 and qi,2 on its boundary.697

This implies that qi,2 is retrieved by the inversion method on qi,3. Therefore, let’s698

add pi ← qi,3 and p̂i ← qi,2 to the sequence of points that we are looking for. Repeat699

this for every ri with i ∈ [1,m] to identify all points in the sequence.700

Finally, we have the sequence of border points ⟨p1, p̂1, p2, p̂2, . . . , pm, p̂m⟩ such701

that for any i ∈ [1,m] assuming that the algorithm selects the points defining the702

same boundary as pi, it will also select p̂i, and leveraging Lemma 3.3 it will eventually703

select all other points defining the same boundary as p̂i. Given that p1 and p̂m are704

defining border points of boundaries A and B, respectively, and by the assumption705

that all points defining A are selected by the algorithm, we know that eventually, all706

points defining B will be selected too.707

Theorem 3.5. The algorithm selects every border point of P in O(nk2) time.708

Proof. Proving the worst-case time complexity of our algorithm follows directly from709

the time complexity of the search phase of Eppstein’s algorithm [8]. However, the710

correctness and completeness of our algorithm follows from Lemmas 3.1 to 3.4.711

First, we know by Lemmas 3.1-3.3 that Algorithm 2 will select the defining712

border points of at least one class boundary of P . Denote this boundary as A and713

consider any other boundary B of P . Evidently, we can draw a path P from A to714

B, which would generally pass through several class regions. Then, let’s split P715

into several subpaths P1,P2, . . . ,Pm such that each subpath is completely contained716

within a single class region. From this, we can directly apply Lemma 3.4 on each of717

the intermediate boundaries that “cut” P into these subpaths. Finally, this implies718

that our algorithm will eventually select every defining point of boundary B, and719

similarly, it will do the same with all other boundaries of P .720

Theorem 3.6. Leveraging Chan’s algorithm [53] for finding extreme points, the721

algorithm selects every border point of P in randomized expected time O(nk log k)722

for d = 3, and in723

O
(
k(nk)1−

1
⌊d/2⌋+1 (log n)O(1)

)
time for all constant dimensions d > 3.724

Just as with Eppstein’s original algorithm, we can use Chan’s randomized725

algorithm [53] for finding extreme points of point sets in Rd in order to reduce the726

expected time complexity of our improved algorithm. The remaining of the proof is727

the same as for Theorem 3.5.728
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Chapter 4: Condensation Algorithms729

4.1 Introduction730

As previously discussed, preserving the class boundaries of a given training731

set P is a desirable objective towards the goal of more efficient nearest-neighbor732

classification. However, the high complexity of computing the entire set of border733

points of P has motivated the study of alternative approaches for training set734

reduction, which include the problems of computing either consistent or selective735

subsets of P . Thus, even though computing minimum cardinality subsets that are736

either consistent or selective is known to be NP-hard [10–12], computing non-minimal737

subsets holding these properties can be done efficiently. Algorithms that compute738

such subsets are frequently referred to as nearest-neighbor condensation heuristics,739

as they “heuristically” select points that are close to the class boundaries induced740

by P . Therefore, such selected subsets induce new class boundaries that resemble741

the original boundaries, albeit not exactly the same.742

However, one significant shortcoming in research on practical nearest-neighbor743

condensation algorithms is the lack of theoretical results on the sizes of their selected744

subsets, where typically, their performance has been established experimentally. This745

chapter presents the first theoretical guarantees on the performance of both new and746

existing condensation algorithms. These results have been published in [54–56].747

The bounds presented in this chapter are established with respect to the size748

of two well-known and structured subsets of points: (i) the set of all nearest-enemy749

points of P of size κ, and (ii) the set of border points of P of size k. Additionally,750

some bounds depend on the minimum nearest-enemy distance of P denoted as γ.751

Algorithm Subset size

CNN O (κ log 1/γ)
FCNN Unbounded w.r.t. k and κ

SFCNN • O (κ log 1/γ)
NET O (κ log 1/γ)
MSS Unbounded w.r.t. k and κ
RSS • O (κ)
VSS • ≤ k

Table 4.1: Contributions on the worst-case analysis on the sizes of subsets selected
by different condensation algorithms. Those marked with • are new algorithms.
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4.2 Lower Bounds752

If we hope to leverage both k and κ to analyze the worst-case performance of753

different nearest-neighbor condensation heuristics, we first need to establish realistic754

expectations on what upper-bounds can be achieved. Therefore, before analyzing755

each of these algorithms individually, we introduce two lower-bounds on the size of756

consistent subsets, one in terms of κ and the other in terms of k.757

First, lets recall the definition of consistency. A subset R ⊆ P is said to be758

consistent [9] if and only if for every p ∈ P its nearest-neighbor in R is of the same759

class as p. Intuitively, R is consistent if and only if all points of P are correctly760

classified with the nearest-neighbor rule w.r.t. R.761

Theorem 4.1. There exists a training set P ⊂ Rd with κ number of nearest-enemy762

points, for which any consistent subset has Ω(κcd−1) points, for some constant c.763

Proof. Lets construct a training set P in d-dimensional Euclidean space, which764

contains points of two classes: red and blue. Consider the following arrangement of765

points: create a red point p, and take every point at distance 1 from p as a blue766

point. Simply, point p plus the points on the surface of the unit ball centered at p.767

Take any consistent subset of P and consider some point p̂ in this subset, along768

with the bisector between p and p̂. The intersection between this bisector and the unit769

ball centered at p describes a cap of the ball of height 1/2. Any point located inside770

this cap is closer to p̂ than p, and hence, correctly classified. Clearly, by definition of771

consistency, all points in the ball must be covered by at least one cap. By a simple772

packing argument, we know such a covering needs Ω(cd−1) points, for some constant773

c. The training set constructed so far has only two nearest-enemy points; i.e., the774

red point p and the one blue point closest to p (assuming general position). Then,775

we can repeat this arrangement κ/2 times using sufficiently separated center points.776

This gives us a new training set P with κ nearest-enemy points in total, for which777

any consistent subset has size Ω(κcd−1).778

Theorem 4.2. There exists a training set P ⊂ Rd with k number of border points,779

for which any consistent subset has at least k points.780

Basically, Theorem 4.1 shows that the best upper-bound that can proved on781

the size of the subsets selected by condensation algorithm, in terms of κ, is O(kcd−1).782

Similarly, Theorem 4.2 proves that in terms of k, the best upper-bound is k itself.783

Clearly, these results provide a steady floor on which to compare the results presented784

in the coming sections of this chapter.785

4.3 Consistent Subsets786

In this section, we explore several algorithms that compute consistent subsets787

of P , and present a formal worst-case analysis on the size of the subsets that these788

algorithms select. Namely, we study the CNN, FCNN, and SFCNN algorithms.789
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4.3.1 CNN790

The CNN algorithm (or Condensed Nearest-Neighbor) was the first algorithm791

to be proposed for computing consistent subsets [9]. In fact, it was introduced right792

along the definition of consistency in Hart’s seminal paper. For more than 30 years,793

and until the introduction of the FCNN algorithm, CNN was considered to be the794

state-of-the-art among condensation heuristics.795

Algorithm 3: CNN

Input: Initial training set P
Output: Consistent subset R ⊆ P

1 R← ϕ
2 while true do
3 R′ ← R
4 foreach pi ∈ P , where i = 1 . . . n do
5 Let nn(pi, R) be the nearest-neighbor of pi w.r.t. R
6 if l(pi) ̸= l(nn(pi, R)) then
7 R← R ∪ {pi}

8 Exit the while loop if R = R′

9 return R

This algorithm is fairly simple (see Algorithm 3 for a formal description).796

Beginning with an empty R set, it repeatedly scans all the points of P . For each797

point p ∈ P , the algorithm checks if its nearest-neighbor within the current R set is798

of the same class as p. That is, the algorithm checks if p would be correctly classified799

using R. If not, p is added to R. Otherwise, the algorithm continues checking the800

next point of P being scanned. Note that P can be scanned multiple times, as801

adding a point to R can induce the misclassification of a previously checked point.802

Evidently, this is a cubic-time algorithm. More specifically, a straightforward803

implementation of CNN yields a O(n2m) worst-case time complexity, where m804

denotes the size of the selected subset. Another characteristic about this algorithm805

is that it is order-dependent, meaning that the resulting subset depends on the order806

in which the points of P were scanned by the algorithm. Unsurprisingly, this is an807

undesirable property for practitioners.808

Theorem 4.3. The CNN algorithm selects O
(
κ log 1

γ

)
points.809

Proof. This follows by a charging argument on every nearest-enemy point in P .810

Therefore, consider one such point p ∈ {ne(r) | r ∈ P} and some value σ ∈ [γ, 1],811

and define Rp,σ to be the subset of points selected by CNN whose nearest-enemy is812

p, and whose distance to p is between σ and 2σ. That is, Rp,σ = {r ∈ R | ne(r) =813

p ∧ d(r, p) ∈ [σ, 2σ)}. All these subsets define a partitioning of R when considering814

all nearest-enemy points of P , and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.815

Now, lets consider any two points a, b ∈ Rp,σ in these subsets. We want to816

prove that d(a, b) ≥ σ. Evidently, if these two points belong to different classes, then817
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by definition we have that d(a, b) ≥ σ. Thus, lets consider the case when both points818

belong to the same class. Lets assume w.l.o.g. that point a was added to R before819

point b. Note that when the algorithm selected point b, the following must be true820

d(a, b) ≥ dne(b, R), as otherwise point b would have been correctly classified using R.821

Moreover, by our partitioning of R, we also know that dne(b, R) ≥ dne(b) ≥ σ.822

Thus, we have proved that d(a, b) ≥ σ. By a simple packing argument based823

on d-dimensional Euclidean balls, we have that |R′
p,σ| ≤ 5d. Altogether, by counting824

over all the Rp,σ sets for every nearest-enemy in the training set and values of σ, the825

size of the subset R selected by CNN is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ 5d+1.826

Assuming d to be constant, this completes the proof.827

Moreover, this analysis is tight. A simple example showcasing this behavior can828

be described as follows: consider a training set P ⊂ R in 1-dimensional Euclidean829

space, and let γ ≪ 1 be a small value. Place a single red point in the origin, and830

make all the points in the segment [γ, 1] blue points. Now consider running CNN on831

this training set, scanning the points starting with the single red point and following832

with the blue points in decreasing order on their coordinate (i.e., in decreasing order833

on their distance to the origin, or also, their nearest-enemy distance). It is easy to834

see that this would make CNN select O(log 1/γ) points. This arrangement can be835

repeated to increase the value of κ, and can also be discretized to make n finite and836

independent from k, κ, and γ.837

The result of Theorem 4.3 confirms the empirical behavior observed for CNN,838

where we see many selected points located far from the boundaries of P (see Fig-839

ure 1.1b). Evidently, the many drawbacks of the CNN algorithm (e.g., its empirical840

behavior, order-dependence, and cubic worst-case time complexity) has motivated841

numerous research on improved approaches towards computing consistent subsets.842

4.3.2 FCNN843

The FCNN algorithm (or Fast CNN) became the state-of-the-art algorithm844

for computing consistent subsets [16] improving over many of CNN’s drawbacks.845

When introduced, it represented a big leap forward on practical methods for nearest-846

neighbor condensation, being among the first worst-case quadratic time algorithms847

for this problem, with an implementation that runs in O(nm) time, where m is the848

size of its selected subset. Additionally, its selected subset is order-independent,849

which is a highly desirable property among practitioners. More importantly, in850

practice, this algorithm significantly outperforms other condensation techniques.851

This is an iterative algorithm that incrementally builds a consistent subset R852

of P (see Algorithm 4). First, it begins by selecting the set of centroids of each class,853

and then continues with an iterative process until the subset becomes consistent.854

During each iteration, the algorithm identifies all points of P that are misclassified855

with the current subset R (i.e., whose nearest-neighbor is of different class), and856

adds some of these points to the subset. In particular, for every point p already in857

the subset, FCNN selects one representative among all the points not yet selected,858

whose nearest-neighbor is p, and that belong to a different class than p. That is, the859
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Figure 4.1: Example of the voren function for any point p ∈ R. Light-colored points
belong to P \R, and points in voren(p,R, P ) are outlined (defined as the enemies of
p inside its voronoi cell w.r.t. R).

representative is selected from the set voren(p,R, P ) which is defined as:860

voren(p,R, P ) = {q ∈ P | nn(q, R) = p ∧ l(q) ̸= l(p)}

See Figure 4.1 for an illustrative example. Usually, the representative chosen is861

the one closest to p, although different approaches can be used. Finally, during each862

iteration, the representative of each point in R is added to the subset (all in a batch863

operation). This is repeated until no misclassified points are left; i.e., until no point864

of R has a representative to choose.865

Algorithm 4: FCNN

Input: Initial training set P
Output: Consistent subset R ⊆ P

1 R← ϕ
2 S ← centroids(P )
3 while S ̸= ϕ do
4 R← R ∪ S
5 S ← ϕ
6 foreach p ∈ R do
7 S ← S ∪ {rep(p, voren(p,R, P ))}

8 return R

Unfortunately, to the best of our knowledge, no upper-bounds for the selection866

of FCNN where known before our work. The remaining of this section presents the867

first results along this line, showing that the selection size of this algorithm cannot868

be upper-bounded in terms of either κ or k, as stated in Theorems 4.4 and 4.5869

respectively.870
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Theorem 4.4. For any 0 < ξ < 1, there exists a training set P ⊂ Rd in Euclidean871

space, with constant number of classes, for which FCNN selects Ω(k + 1/ξ) points.872

Proof. Consider the arrangement in Figure 4.2b (left), consisting of points of four873

classes. The centroids of the blue, yellow, and red classes are the only points874

labeled as such. By placing a sufficient number of black points far at the top of875

this arrangement, we avoid their centroid to be any of the three black points in the876

arrangement. Beginning with the centroids, the first iteration of FCNN would have877

added the points outlined in Figure 4.2b (right). Now each of these points have one878

black point inside their Voronoi cells, and therefore, these black points will be the879

representatives added in the second iteration. This small example, with k = 5, shows880

how to force FCNN to add all the border points plus two non-border points. Out881

of these two non-border black points, one is the centroid added in the initial step.882

The remaining non-border black point, however, was added by the algorithm during883

the iterative process. This scheme can be extended to larger values of k, without884

increasing the number of classes.885

(a) Entire arrangement of points.

(b) Middle arrangement. (c) Side arrangement.

Figure 4.2: Example of a training set P ⊂ R2 for which FCNN selects more than k
points.

The previous is the first building block of the entire training set, shown in886

Figure 4.2a. To this “middle” arrangement, we append “side” arrangements of887

points, as the one illustrated in Figure 4.2c, which will have similar behavior to the888

middle arrangement. This particular side arrangement will be appended to the right889

of the middle one, such that the distance between the red points is greater than890
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the distance from the yellow to the red point. Every time we append a new side891

arrangement, its blue and red labels are swapped. The arrangements appended to892

the left side are simply a horizontal flip of the right arrangement. Now, the behavior893

of FCNN in such a setup is illustrated with the arrows in Figure 4.2a. The extreme894

point of the previous arrangement adds the yellow point at the center of the current895

arrangement, which then adds the red point next to the blue point, as is closer than896

the other red point. Next, this red point adds the blue point, and the yellow point897

adds the remaining red point. Finally, the Voronoi cells of these points will look as898

shown in Figure 4.2c (right), and in the next iteration, the tree black points will be899

added.900

After adding side arrangements as needed (same number of the left and right),901

it is easy to show that the centroids are still the tree points in the middle arrangement902

and the black point at the top (by adding a sufficient number of black points in the903

top cluster). This implies that FCNN will be forced to select more than k points.904

Theorem 4.5. For any 0 < ξ < 1, there exists a training set P ⊂ Rd in Euclidean905

space, with constant number of classes, for which FCNN selects Ω(κ/ξ) points.906

Proof. Without loss of generality, let ξ = 1/2t for some value t > 3, we construct a907

training set P ⊂ R3 with constant number of classes, and number of nearest-enemy908

points κ equal to O(1/ξ), for which FCNN is forced to select O(1/ξ2) points. The909

key downside of the algorithm occurs when points are added to the subset in the910

same iteration. In general, during any given iteration, the representatives of two911

neighboring points in FCNN can be arbitrarily close to each other. This flaw can be912

exploited to force the algorithm to add O(1/ξ) such points.913

Intuitively, our constructed training set P consists of several layers of points
arranged parallel to the xy-plane, and stacked on top of each other around the z-axis
(see Figure 4.3). Each layer is a disk-like arrangement, formed by a center point and
points at distance 1 from this center. Thus, define the backbone points of P as the
center points ci = 2iv⃗z for i ≥ 0. We now describe the different arrangements of
points as follows (see Figure 4.3):

B = c0 ∪ {yj = c0 + v⃗xRz(jπ/4) | j ∈ [0, . . . , 8)}
Mi = {c2i, c2i+1,mi = (c2i + c2i+1)/2}
∪
{
rij = c2i + v⃗xRz(jπ/2

1+i) | j ∈ [0, . . . , 22+i)
}

∪
{
bij = c2i+1 + v⃗xRz(jπ/2

1+i) | j ∈ [0, . . . , 22+i)
}

∪
{
wij = c2i+1 + v⃗xRz((2j + 1)π/22+i − ξ2) | j ∈ [0, . . . , 22+i)

}
Ri = {c2i, c2i+1}
∪ {rij = c2i + v⃗xRz(j2π/ξ) | j ∈ [0, . . . , ξ)}
∪ {bij = c2i+1 + v⃗xRz(j2π/ξ) | j ∈ [0, . . . , ξ)}

These points belong to one of 11 classes named {1, . . . , 8, red, blue,white}.914

Then define the labeling function l as follows: l(ci) is red when i is even and blue915

when i is odd, l(mi) is white, l(yj) is the j-th class, l(rij) is red, l(bij) is blue, and916

l(wij) is white.917
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(a) Entire arrangement of points, by stack-
ing the different arrangements along the
z-axis. The arrows illustrate the selection
process by FCNN on a multiplicative ar-
rangementMi.

(b) Base arrangement B. Each point in
the circumference belongs to a unique class
(here colored in yellow and numbered 1 to
8 for clarity).

(c) A multiplier arrangement Mi. This
forces FCNN to duplicate the number of
representatives around the circumference
selected on an iteration.

(d) A repetitive arrangement Ri. This
maintains the number of representatives
selected by FCNN on each iteration of the
algorithm.

Figure 4.3: Example of a training set P ⊂ R3 for which FCNN selects Ω(κ/ξ) points.

Base arrangement B: Consists of one single layer of points, with one red center918

point c0 and 8 points yj in the circumference of the unit disk (parallel to the xy-plane),919

each labeled with a unique class j (see Figure 4.3b). The goal of this arrangement is920

that each of these points is the centroid of its corresponding class. The centroids of921

the blue and white classes can be fixed to be far enough, so we won’t consider them922

for now. Hence, the first iteration of FCNN will add all the points of B. In the next923

iteration, each of these points will select a representative in the arrangement above.924

Clearly, the size of B is 9, and it contributes with 8 nearest-enemy points in total.925

31



Multiplier arrangementMi: Our final goal is to have O(1/ξ) arbitrarily close926

points selecting representatives on a single iteration; currently, we only have 9 (the927

base arrangement). While this could be simply achieved with O(1/ξ) points in B928

each with a unique class, we want to use a constant number of classes. Instead, we929

use each multiplier arrangement to double the number of representatives selected.930

Mi consists of (1) a layer with a blue center c2i and 22+i red points rij around931

the unit disk’s circumference, (2) a layer with a red center c2i+1 and 23+i blue bij932

and white wij points around the unit disk’s circumference, and (3) a middle white933

center point mi between the red and blue center points (see Figure 4.3c). Suppose at934

iteration 3i− 1 all the points rij and c2i of the first layer are added as representatives935

of the previous arrangement, which is given forM1 from the selection of B. Then,936

during iteration 3i each rij adds the point bij right above, while c2i adds point mi937

(see the red arrows in Figure 4.3a). Finally, during iteration 3i+ 1, mi adds c2i+1,938

and each bij adds point wij as its the closest point inside the voronoi cell of bij (see939

the blue arrows in Figure 4.3a). Now, with all the points of this layer added, each940

continues to select points in the following arrangement (eitherMi+1 or Ri+1). The941

size of eachMi is 3(1 + 22+i) = O(23+i), and contributes with 3 + 2(22+i) = O(23+i)942

to the total number of nearest-enemy points. In order to select 1/ξ = 2t points in a943

single iteration, we need to stackMi’s for i ∈ [1, . . . , t− 3].944

Repetitive arrangement Ri: Once the algorithm reaches the last multiplier945

layerMt−3, it will select 1/ξ points during the following iteration. The repetitive946

arrangement allows us to continue adding these many points on every iteration, while947

only increasing the number of nearest-enemy points by a constant. This arrangement948

consists of (1) a first layer with a blue center c2i surrounded by 1/ξ red points rij949

around the unit disk circumference, and (2) a second layer with red center c2i+1 and950

blue points bij in the circumference (see Figure 4.3d). Once the first layer is added all951

in a single iteration, during the following iteration c2i adds c2i+1, and each rij adds952

bij. The size of each Ri is 2(1 + 1/ξ) = O(1/ξ), and it contributes with 4 points to953

the total number of nearest-enemy points. Now, we stack O(1/ξ) such arrangements954

Ri for i ∈ [t − 2, . . . , 1/ξ], such that we obtain the desired ratio between selected955

points and number of nearest-enemy points of the training set.956

The training set is then defined as P = B
⋃t−3

i=1Mi

⋃1/ξ
i=t−2Ri ∪ F , where F957

is a set of points designed to fix the centroids of P . These extra points are located958

far enough from the remaining points of P , and are carefully placed such that959

the centroids of P are all the points of B, plus a blue and white point from F .960

Additionally, all the points of F should be closer to it’s corresponding class centroid961

than to any enemy centroid, and they should increase the number of nearest-enemy962

points by a constant. This can be done with O(n) extra points.963

All together, by adding up the corresponding terms, the ratio between the size964

of FCNN and κ (the number of nearest-enemy points of P ) is O(1/ξ). Therefore,965

there exists a training set in 3-dimensional Euclidean space for which FCNN selects966

O(κ/ξ) for any ξ < 1/8.967

These results show that adding points in batch on every iteration of FCNN968

prevents the algorithm to have any guarantee on the size of its selected subset, in969
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terms of either k or κ. However, this design choice is not key for any of the features970

of the algorithm, and can therefore be avoided.971

4.3.3 SFCNN972

The SFCNN algorithm (or Single FCNN) is a modified version of FCNN such973

that only one single representative is added to the subset R on each iteration of974

the algorithm. Surprisingly, such a simple change in the selection process allows975

us to successfully analyze the size of SFCNN in terms of κ, and even prove that it976

computes a tight approximation of the minimum cardinality consistent subset of977

P on general metrics. These results can be seen as corollaries of the more general978

Theorems 5.16 and 5.17, which are presented later in Chapter 5.979

Algorithm 5: SFCNN

Input: Initial training set P
Output: Consistent subset R ⊆ P

1 R← ϕ
2 S ← centroids(P )
3 while S ̸= ϕ do
4 R← R ∪ {Choose one point of S}
5 S ← ϕ
6 foreach p ∈ R do
7 S ← S ∪ {rep(p, voren(p,R, P ))}

8 return R

Following similar arguments to the ones described for the upper-bound proved980

on CNN (see Theorem 4.3), the following theorem proofs a comparable upper-bound981

for SFCNN in terms of κ and γ.982

Theorem 4.6. The SFCNN algorithm selects O(κ log 1
γ
) points.983

Proof. Similarly to the upper-bound proof of CNN, this result follows by a charging984

argument on each nearest-enemy point in the training set. Consider one such point985

p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1]. We define Rp,σ to be the subset of points986

selected by SFCNN whose nearest-enemy is p, and whose distance to p is between987

σ and 2σ. That is, Rp,σ = {r ∈ R | ne(r) = p ∧ d(r, p) ∈ [σ, 2σ)}. Clearly, these988

subsets define a partitioning of R when considering all nearest-enemy points of P ,989

and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.990

Consider any two points a, b ∈ Rp,σ in these subsets. Assume w.l.o.g. that991

point a was selected by the algorithm before point b (i.e., in a prior iteration). We992

show that d(a, b) ≥ σ. By contradiction, assume that d(a, b) < σ, which immediately993

implies that a and b belong to the same class. Moreover, recalling that b’s nearest-994

enemy in P is p, at distance d(b, p) ≥ σ, this implies that b is closer to a than to995

any enemy in R. Therefore, by the definition of the voren function, b could never be996

selected by SFCNN, which is a contradiction.997
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This proves that d(a, b) ≥ σ. Now, just as with CNN, using a simple packing998

argument based on d-dimensional Euclidean balls, we have that |R′
p,σ| ≤ 5d. Alto-999

gether, by counting over all the Rp,σ sets for every nearest-enemy in the training set1000

and values of σ, the size of R is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ 5d+1. Assuming1001

d to be constant, this completes the proof.1002

4.4 Selective Subsets1003

Another common criterion used for nearest-neighbor condensation is known as1004

selectiveness [34]. A subset R ⊆ P is said to be selective if and only if for every point1005

p ∈ P its nearest-neighbor in R is closer to p than its nearest-enemy in P . Clearly1006

selectiveness implies consistency, as the nearest-enemy distance in R of any point of1007

P is at least its nearest-enemy distance in P .1008

Similarly to the previous section, this section studies several algorithms that1009

compute selective subsets of P , along with a formal worst-case analysis on the sizes of1010

their selected subsets. Namely, these are the NET, MSS, RSS, and VSS algorithms.1011

4.4.1 NET1012

The NET algorithm [36] was proposed as an approximation algorithm for the1013

problem of finding minimum cardinality consistent subsets. Their paper also presents1014

almost matching hardness lower-bounds for this problem. While this algorithm is1015

proposed for computing consistent subsets of P , it can easily be shown that its1016

selection is actually selective. Hence, the NET algorithm is described and analyzed1017

in this section, and not in section 4.3.1018

The algorithm is fairly simple, and works by computing a γ-net of P where1019

γ is the minimum nearest-enemy distance in P . Evidently, this subset must be1020

selective. Moreover, the authors of the paper prove that this algorithm computes a1021

tight approximation of the minimum cardinality consistent subsets, being the first1022

algorithm to show such guarantees. However, in practice, γ tends to be small, which1023

results in subsets of much higher cardinality than needed. To overcome this issue,1024

the authors proposed a post-processing pruning technique to further reduce the1025

selected subset, which is formally described in Algorithm 6. But even with this extra1026

pruning, NET is often outperformed on typical training sets (w.r.t. both runtime1027

and selection size) by the more practical heuristics studied in this chapter.1028

Theorem 4.7. The NET+Prune algorithm selects O(κ log 1
γ
) points.1029

Proof. Proving this result follows basically the same arguments described on the1030

proofs of Theorems 4.3 and 4.6. Similarly, we must define the sets Rp,σ as the points1031

selected by the NET+Prune algorithm whose nearest-enemy is some point p ∈ P ,1032

and its nearest-enemy distance is between [σ, 2σ). The main difference lies on the1033

lower-bound on the distance between any two points a, b ∈ Rp,σ in such subsets. In1034

this case, we can only guarantee that d(a, b) ≥ σ/2− γ. Even though this slightly1035

complicates the packing argument, we can still argue that there exists a constant1036

34



Algorithm 6: NET+Prune

Input: Initial training set P
Output: Selective subset R ⊆ P

1 R← Compute a γ-net of P
2 foreach i ∈ {1, 0, . . . , ⌊log γ⌋} do
3 foreach p ∈ R with dne(p,R) ≥ 2i+1 do
4 R← R \ {q ∈ R | q ̸= p ∧ d(p, q) < 2i − γ}

5 return R

c such that |Rp,σ| ≤ cd. Therefore, this implies that NET+Prune selects a subset1037

with at most κ⌈log 1
γ
⌉ cd points, which completes the proof.1038

4.4.2 MSS1039

The MSS algorithm (or Modified Selective Subset) has been considered a state-1040

of-the-art algorithm for computing selective subsets [17], due to its good performance1041

in practice and its O(n2) worst-case runtime.1042

The selection process of the algorithm can be simply described as follows: for1043

every p ∈ P , MSS selects the point with smallest nearest-enemy distance contained1044

inside the nearest-enemy ball of p. Clearly, this approach computes a selective subset1045

of P , which by definition, is order-independent. Unfortunately, the selection criteria1046

of MSS can be too strict, requiring one particular point to be added for each point1047

p ∈ P . Note that any point inside the nearest-enemy ball of p suffices for achieving1048

selectiveness. In practice, this can lead to much larger subsets than needed. This1049

intuition is formalized in the following theorem, where we show how MSS can select1050

a subset of unbounded size as a function of either κ or k.1051

Theorem 4.8. There exists a training set P ⊂ Rd in Euclidean space, with constant1052

number of classes, nearest-enemy points, and border points, such that MSS selects1053

Ω(1/ξ) points, for any 0 < ξ < 1.1054

Proof. Recall that for each point in P , the MSS algorithm selects the point inside1055

its nearest-enemy ball with smallest nearest-enemy distance. Given a parameter1056

0 < ξ < 1, we construct a training set in 1-dimensional Euclidean space, as illustrated1057

in Figure 4.4a. Create two points r1 and r2, and assign them to the class of red1058

points. w.l.o.g. the distance between these two points is 1. Let u⃗ be the unit vector1059

from r1 to r2, create additional points bi = r1 +
iξ
4
u⃗ for i = {1, 2, . . . , 3/ξ}. Assign1060

all bi points to the class of blue points. The set of all these points constitute the1061

training set P . It is easy to prove that P has only four nearest-enemy points and1062

four border points, corresponding to r1, r2, b1 and b3/ξ.1063

Let’s discuss which points are added by MSS for each point in P (see Fig-1064

ure 4.4b). For points r1 and r2, the only points inside their nearest-enemy balls1065

are themselves, so both r1 and r2 belong to the subset selected by MSS. For points1066

bi with i ≤ 2/ξ, the point with smallest nearest-enemy distance contained inside1067
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Algorithm 7: MSS

Input: Initial training set P
Output: Selective subset R ⊆ P

1 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy
distance dne(pi)

2 R← ϕ
3 S ← P
4 foreach pi ∈ P , where i = 1 . . . n do
5 add ← false
6 foreach pj ∈ P , where j = i . . . n do
7 if pj ∈ S ∧ d(pj , pi) < dne(pj) then
8 S ← S \ {pj}
9 add ← true

10 if add then
11 R← R ∪ {pi}

12 return R

(a) Initial training set of collinear points, where both the number of nearest-enemy points
and the number of border points equal to 4. That is, κ = k = 4.

(b) Subset of points computed by MSS from the original training set (fully colored points
belong to the subset, while faded points do not). The size of the subset is Ω(1/ξ).

Figure 4.4: Unbounded example for MSS with respect to κ and k.

their nearest-enemy ball is b1, which is also added to the subset. Now, consider the1068

points bi with 2/ξ < i < 5/2ξ. Let j = i − 2/ξ, it is easy to prove that the point1069

with smallest nearest-enemy distance inside the nearest-enemy ball of bi is b2j+1 (see1070

Figure 4.4b). Therefore, this implies that the number of points selected by MSS1071

equals 5/2ξ − 2/ξ = 1/2ξ = Ω(1/ξ).1072
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4.4.3 RSS1073

We propose the RSS algorithm (or Relaxed Selective Subset) with the idea1074

of relaxing the selection process of MSS, while still computing a selective subset.1075

For any given point p ∈ P in the training set, while MSS requires to add the point1076

with smallest nearest-enemy distance inside the nearest-enemy ball of p, in RSS1077

any point inside the nearest-enemy ball p suffices. The idea is rather simple (see1078

Algorithm 8). Points of P are examined in increasing order with respect to their1079

nearest-enemy distance, and we add any point whose nearest-enemy ball contains1080

no point previously added by the algorithm. This tends to select points close to1081

the decision boundaries of P (see Figure 1.1g), as points far from the boundary are1082

examined later in the selection process, and are more likely to already contain points1083

inside their nearest-enemy ball.1084

Algorithm 8: RSS

Input: Initial training set P
Output: Selective subset R ⊆ P

1 R← ϕ
2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi, R) ≥ dne(pi) then
5 R← R ∪ {pi}

6 return R

Just like MSS, RSS is order-independent and computes a selective subset of1085

P in O(n2) worst-case time. Its selectiveness is evident, as every point in P is1086

either added to the subset, or has a point in the subset inside its nearest-enemy ball.1087

Its order-independence follows from the initial sorting step of the algorithm. Now,1088

the time complexity of RSS can be analyzed as follows. The initial step requires1089

O(n2) time for computing the nearest-enemy distances of each point in P , plus1090

additional O(n log n) time for sorting the points according to such distances. The1091

main loop iterates through each point in P , and searches their nearest-neighbor in1092

the current subset, incurring into additional O(n2) time using a simple linear search.1093

All together, the worst-case time complexity of the algorithm is quadratic.1094

Theorem 4.9. The RSS algorithm selects O(κ) points.1095

Proof. The proof follows by a charging argument on each nearest-enemy point of1096

P . Consider a nearest-enemy point p ∈ P , and let Rp be the set of points selected1097

by RSS such that p is their nearest-enemy. Let a, b ∈ Rp be two such points, and1098

w.l.o.g. say that dne(a) ≤ dne(b). By construction of the algorithm, we also know1099

that d(a, b) ≥ dne(b). Now, consider the triangle △pab. Clearly, pa is the largest side1100

of the triangle, making the angle ∠apb ≥ π/3. This means that the angle between1101

any two points in Rp with respect to p is at least π/3.1102
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By a standard packing argument, this implies that |Rp| = O((3/π)d−1). Finally,1103

we obtain that the number of points selected by RSS is
∑

p |Rp| = κ O((3/π)d−1).1104

Additionally, we prove that the size of the subset selected by RSS can be1105

bounded as a function of κ and the dimensionality of P . Moreover, we show that1106

RSS computes an approximation of both the consistent and selective subsets of1107

minimum cardinality. These results come as corollaries of Theorems 5.10 and 5.11,1108

which will be described in later sections. However, different parameters from κ can be1109

used to bound the selection size of condensation algorithms: consider k, the number1110

of border points in the training set P . From the example illustrated in Figure 4.5,1111

we know that RSS can select more points than k (see Figure 4.5b). Repeating such1112

arrangement forces RSS to select Ω(k + 1/ξ) points.1113

(a) Basic point arrangement in R2, along
with the Voronoi diagram induced by such
points.

(b) RSS selection outlined, along with the
nearest-enemy balls of each point in the
arrangement.

Figure 4.5: Example where RSS selects k + 1 points.

4.4.4 VSS1114

We now propose the VSS algorithm (or Voronoi Selective Subset). This new1115

algorithm comes as a modification of RSS, based on an observation from the proof1116

of the following lemma. As stated in Chapter 2, we are able to prove that every1117

nearest-enemy is also a border point of P , formalized here.1118

Lemma 4.10. Any nearest-enemy point of a point in P is also a border point of P .1119

Proof. Take any point p ∈ P . Consider the empty ball of maximum radius, tangent1120

to point ne(p), and with center in the line segment between p and ne(p). Being1121

maximal, this ball is tangent to another point p∗ ∈ P (see Figure 4.6a). Clearly, p∗1122

is inside the nearest-enemy ball of p, which implies that p and p∗ belong to the same1123
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class, making p∗ and ne(p) enemies. By the empty ball property, this means that1124

both p∗ and ne(p) are border points of P .1125

(a) The largest empty ball tangent to ne(p)
and center in p ne(p), is also tangent to some
point p∗, making p∗ and ne(p) border points.

(b) How to compute the radius of a ball with
center in the line segment between p and
ne(p), and tangent to both ne(p) and p′.

Figure 4.6: Relation between nearest-enemy points and border points.

Therefore, from Lemma 4.10 we know that in d-dimensional Euclidean space,1126

the number of nearest-enemy points of P is at most the number of border points of1127

P . That is, κ ≤ k. Moreover, this result can be easily extended to ℓp metric spaces1128

with p ≥ 2. While this result implies an easy extension of the upper-bounds found1129

for RSS, CNN, SFCNN, and NET+Prune, now in terms of k instead of κ, it is1130

unclear if the other factors in those upper-bounds can be improved.1131

Coming back to VSS, this proof opens an alternative idea for condensation.1132

In order to prove Lemma 4.10, we show that there exist at least one border point1133

inside the nearest-enemy ball of any point p ∈ P . Therefore, by selecting such border1134

points, we can guarantee that the resulting subset is selective and its size is ≤ k.1135

We call this algorithm VSS (see Algorithm 9 for a formal description). Essen-1136

tially, we show this algorithm computes a selective subset of P of size at most k. By1137

construction, for any point in p ∈ P the algorithm selects one border point inside1138

the nearest-enemy ball of p, which implies that the resulting subset is selective, and1139

contains no more than k points.1140

Theorem 4.11. The VSS algorithm selects at most k points.1141

Finally, we describe an efficient implementation of VSS, showing this algorithm1142

can be implemented to run in quadratic time. Recall that for every point p ∈ P , the1143

algorithm selects a border point inside its nearest-enemy ball. w.l.o.g. implement1144

VSS to compute the point p∗ that minimizes the radius of an empty ball tangent1145
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Algorithm 9: VSS

Input: Initial training set P
Output: Selective subset R ⊆ P

1 R← ϕ
2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi, R) ≥ dne(pi) then
5 Find a border point that lies inside the nearest-enemy ball of pi and add it

to R

6 return R

to both ne(p) and p∗, and center in the line segment between p and ne(p). For any1146

given point p′ inside the nearest-enemy ball of p, denote r(p, p′) to be the radius1147

of the ball tangent to p′ and ne(p) and center in the line segment between p and1148

ne(p). As illustrated in Figure 4.6b, let vectors u⃗ = p−ne(p)
∥p−ne(p)∥ and v⃗ = p′ − ne(p),1149

the radius of this ball can be derived from the formula r(p, p′) = ∥v⃗ + r(p, p′)u⃗∥ as1150

r(p, p′) = v⃗ · v⃗/2u⃗ · v⃗. As p∗ is defined as the point that minimizes such radius, a1151

simple scan over the points of P suffices to identify the corresponding p∗ for any1152

point p ∈ P . Therefore, this implies that VSS can be computed in O(n2) worst-case1153

time.1154

4.5 Experimental Comparison1155

Historically, the importance of some condensation algorithms rely on their1156

performance in practice, despite the lack of theoretical guarantees. Therefore, a1157

natural question is how the algorithms proposed in this chapter compare to existing1158

ones when evaluated in real-world training sets.1159

Thus, to get a clearer impression of the relevance of these results in practice, we1160

performed experimental trials on several training sets, both synthetically generated1161

and widely used benchmarks. First, we consider 21 training sets from the UCI1162

Machine Learning Repository1 which are commonly used in the literature to evaluate1163

condensation algorithms [18]. These consist of a number of points ranging from 1501164

to 58000, in d-dimensional Euclidean space with d between 2 and 64, and 2 to 261165

classes. We also generated some synthetic training sets, containing 105 uniformly1166

distributed points, in 2 to 3 dimensions, and 3 classes. All training sets used in1167

these experimental trials are summarized in Table 4.2. The implementation of the1168

algorithms, training sets used, and raw results, are publicly available2.1169

We test seven different condensation algorithms, namely CNN, FCNN, SFCNN,1170

MSS, RSS, VSS, and NET. To compare their results, we consider their runtime and1171

1https://archive.ics.uci.edu/ml/index.php
2https://github.com/afloresv/nnc/
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Training set n d c κ (%)

banana 5300 2 2 811 (15.30%)
cleveland 297 13 5 125 (42.09%)
glass 214 9 6 87 (40.65%)
iris 150 4 3 20 (13.33%)

iris2d 150 2 3 13 (8.67%)
letter 20000 16 26 6100 (30.50%)
magic 19020 10 2 5191 (27.29%)
monk 432 6 2 300 (69.44%)

optdigits 5620 64 10 1245 (22.15%)
pageblocks 5472 10 5 429 (7.84%)
penbased 10992 16 10 1352 (12.30%)
pima 768 8 2 293 (38.15%)
ring 7400 20 2 2369 (32.01%)

satimage 6435 36 6 1167 (18.14%)
segmentation 2100 19 7 398 (18.95%)

shuttle 58000 9 7 920 (1.59%)
thyroid 7200 21 3 779 (10.82%)
twonorm 7400 20 2 1298 (17.54%)
wdbc 569 30 2 123 (21.62%)
wine 178 13 3 37 (20.79%)

wisconsin 683 9 2 35 (5.12%)
v-100000-2-3-15 100000 2 3 1909 (1.90%)
v-100000-2-3-5 100000 2 3 788 (0.78%)
v-100000-3-3-15 100000 3 3 7043 (7.04%)
v-100000-3-3-5 100000 3 3 3738 (3.73%)
v-100000-4-3-15 100000 4 3 13027 (13.02%)
v-100000-4-3-5 100000 4 3 10826 (10.82%)
v-100000-5-3-15 100000 5 3 22255 (22.25%)
v-100000-5-3-5 100000 5 3 17705 (17.70%)

Table 4.2: Training sets used to evaluate the performance of condensation algorithms.
Indicates the number of points n, dimensions d, classes c, nearest-enemy points κ
(also in percentage w.r.t. n).

the size of the selected subset. Clearly, these values might differ greatly on training1172

sets whose size are too distinct. Therefore, before comparing the raw results, these1173

are normalized. The runtime of an algorithm for a given training set is normalized1174

by dividing it by n, the size of the training set. The size of the selected subset is1175

normalized by dividing it by κ, the number of nearest-enemy points in the training1176

set, which characterizes the complexity of the boundaries between classes.1177

Figures 4.7a and 4.7b summarize the experimental results. Evidently, the1178

performance of SFCNN is equivalent to the original FCNN algorithm, both in1179

terms of runtime and the size of their selected subsets, showing that the proposed1180

modification does not affect the behavior of the algorithm in real-world training1181

sets. Both FCNN and SFCNN outperform other condensation algorithms in terms1182

of runtime, while their subset size is comparable in all cases, with the exception of1183

the NET algorithm.1184
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(a) Running time.

(b) Size of the selected subsets.

Figure 4.7: Evaluating the studied condensation algorithms: CNN, FCNN, SFCNN,
NET, MSS, RSS, and VSS.
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Chapter 5: ε-Coresets1185

5.1 Introduction1186

There are obvious parallels between the problem of nearest-neighbor condensa-1187

tion and the concept of coresets in geometric approximation [57–60]. Intuitively, a1188

coreset is small subset of the original data, that well approximates some statistical1189

properties of the original set. Coresets have previously been applied to many prob-1190

lems in machine learning, such as clustering and neural network compression [61–64].1191

Additionally, coresets have been used towards achieving more efficient classification1192

techniques, as evidenced by the recent results on coresets for the SVM classifier [65].1193

While the other chapters of this book deal with training sets in d-dimensional1194

Euclidean space (i.e., P ⊂ Rd), this chapter deals with the more generic concept1195

of metric spaces. Therefore, we assume a training set P consisting of n points in a1196

metric space (X , d), with domain X and distance function d : X 2 → R+. Evidently,1197

d must hold the properties of identity, symmetry, and triangle inequality. The rest1198

remains the same. That is, P is partitioned into a finite set of classes by associating1199

each point p ∈ P with a label l(p), indicating the class to which it belongs.1200

Given an unlabeled query point q ∈ X , the exact nearest-neighbor rule predicts1201

q’s class using the class of its closest point in P according to metric d. That is, it1202

assigns q to the class l(nn(q)), where nn(q) = argminp∈P d(q, p).1203

So far, in Chapters 3 and 4 we have assumed that q’s nearest-neighbor is always1204

computed exactly. However, it is common practice that these queries are instead1205

computed approximately, leveraging known techniques for efficient nearest-neighbor1206

search like Approximate Voronoi Diagrams [19,20], Locality-Sensitive Hashing [21],1207

and Hierarchical Navigable Small Worlds graphs [22]. In this context, we are given1208

an approximation parameter ε ∈ [0, 1] and an unlabeled query point q ∈ X , and the1209

ε-approximate nearest-neighbor rule assigns q to the class of some point p, where1210

p is any point of P such that d(q, p) ≤ (1 + ε) dnn(q). Therefore, in both this and1211

the following chapters, we discuss different techniques to achieve boundary-sensitive1212

approaches (i.e., dependent on κ and k instead of n) for approximate nearest-neighbor1213

classification.1214

This chapter presents the first approach proposed to compute coresets for nearest-1215

neighbor classification, leveraging its resemblance to the problem of nearest-neighbor1216

condensation. These results have been published in [66].1217
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Preliminaries1218

Similarly to Chapter 4, we define notation relevant to understanding the results1219

presented. Given any point q ∈ X in the metric space, its nearest-neighbor, denoted1220

nn(q), is the closest point of P according the the distance function d. The distance1221

from q to its nearest-neighbor is denoted by dnn(q, P ), or simply dnn(q) when P is1222

clear. Given a point p ∈ P from the training set its nearest-neighbor in P is p itself.1223

Additionally, any point of P whose label differs from p’s is called an enemy of p. The1224

closest such point is called p’s nearest-enemy, and the distance to this point is called1225

p’s nearest-enemy distance. These are denoted as ne(p) and dne(p, P ), respectively.1226

Evidently, we can simplify dne(p, P ) as dne(p) when it is clear.1227

Unsurprisingly, the size of a coreset for nearest-neighbor classification should1228

depend on the spatial characteristics of the points of different classes in the training1229

set. For example, it should be much easier to find a small coreset for two spatially1230

well separated clusters than for two classes that have a high degree of overlap. Again,1231

we use the number of nearest-enemy points of P , denoted as κ, to model the intrinsic1232

complexity of the problem of nearest-neighbor classification.1233

Other intrinsic characteristics of P will also come handy when describing these1234

coresets. Through a suitable uniform scaling, we may assume that the diameter of1235

P (that is, the maximum distance between any two points in the training set) is 1.1236

Then, the spread of P , denoted as ∆, is the ratio between the largest and smallest1237

distances in P . Similarly, recall the definition of the margin of P , denoted γ, as the1238

smallest nearest-enemy distance in P . Clearly, we can see that 1/γ ≤ ∆.1239

Additionally, a metric space (X , d) is said to be doubling [5] if there exist some1240

bounded value λ such that any metric ball of radius r can be covered with at most1241

λ metric balls of radius r/2. Its doubling dimension is the base-2 logarithm of λ,1242

denoted as ddim(X ) = log λ. Throughout this chapter, we assume that ddim(X )1243

is a constant, which means that multiplicative factors depending on ddim(X ) may1244

be hidden in our asymptotic notation. Many natural metric spaces of interest are1245

doubling, including d-dimensional Euclidean space whose doubling dimension is Θ(d).1246

An important property of doubling spaces, that will come useful throughout this1247

chapter, is that for any subset R ⊆ X with spread ∆R, the size of R is upper-bounded1248

by |R| ≤ ⌈∆R⌉ddim(X )+1.1249

Contributions1250

In this chapter, we introduce the concept of a coreset for classification with the1251

nearest-neighbor rule, which provides approximate guarantees on correct classification1252

for all query points. We demonstrate their existence, analyze their size, and discuss1253

approaches for their efficient computation.1254

We say that a subset R ⊆ P is an ε-coreset for the nearest-neighbor rule on P ,1255

if and only if for every query point q ∈ X , the class of its exact nearest-neighbor in1256

R is the same as the class of some ε-approximate nearest-neighbor of q in P (see1257

Section 5.2 for definitions). Recalling the concepts of κ and γ introduced in the1258

preliminaries, here is our main result:1259
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Theorem 5.1. Given a training set P in a doubling metric space (X , d), there exist1260

an ε-coreset for the nearest-neighbor rule of size O(κ log 1
γ
(1/ε)ddim(X )+1), and this1261

coreset can be computed in subquadratic worst-case time.1262

The following summarizes of the principal results presented in the remaining1263

sections, which all together are leveraged to prove the main theorem.1264

• We extend the criteria used for nearest-neighbor condensation, and identify1265

sufficient conditions to guarantee the correct classification of any query point1266

after condensation. These conditions are the ones that describe our coreset1267

construction.1268

• We prove that finding minimum-cardinality subsets with this new criteria is1269

NP-hard. Moreover, we prove it is even hard to approximate within practical1270

factors.1271

• We provide quadratic-time approximation algorithms with provable upper-1272

bounds on the sizes of their selected subsets, and we show that the running time1273

of one such algorithm can be improved to be subquadratic. This subquadratic-1274

time algorithm is the first with such worst-case runtime for the problem of1275

nearest-neighbor condensation.1276

5.2 Coreset Characterization1277

In practice, many applications usually rely its efficiency on computing nearest-1278

neighbors not exactly, but rather approximately. Given an approximation parameter1279

ε ≥ 0, an ε-approximate nearest-neighbor or ε-ANN query returns any point whose1280

distance from the query point is within a factor of (1 + ε) times the true nearest-1281

neighbor distance.1282

Intuitively, a query point should be easier to classify if its nearest-neighbor is1283

significantly closer than its nearest-enemy. This intuition can be formalized through1284

the concept of the chromatic density [51] of a query point q ∈ X with respect to a1285

set R ⊆ P , defined as:1286

δ(q, R) =
dne(q, R)

dnn(q, R)
− 1. (5.1)

Clearly, if δ(q, R) > ε then q will be correctly classified1 by an ε-ANN query1287

over R, as all possible candidates for the approximate nearest-neighbor belong to1288

the same class as q’s true nearest-neighbor. However, as evidenced in Figures 5.1a1289

and 5.1b, one side effect of existing condensation algorithms is a significant reduction1290

in the chromatic density of query points. Consequently, we propose new criteria1291

and algorithms that maintain high chromatic densities after condensation, which are1292

then leveraged to build coresets for the nearest-neighbor rule.1293

1By correct classification, we mean that the classification is the same as the classification that
results from applying the nearest-neighbor rule exactly on the entire training set P .
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(a) FCNN (b) RSS (c) 0.1-RSS (d) 0.5-RSS

Figure 5.1: Heatmap of chromatic density values of points in R2 w.r.t. the sub-
sets computed by different condensation algorithms: FCNN, RSS, and α-RSS (see
Figure 1.1). Yellow • corresponds to chromatic density values ≥ 0.5, while blue •
corresponds to 0. Evidently, α-RSS helps maintaining high chromatic density values
when compared to standard condensation algorithms.

5.2.1 Approximation-Sensitive Condensation1294

The decision boundaries of the nearest-neighbor rule (that is, points q such that1295

dne(q, P ) = dnn(q, P )) are naturally characterized by points that separate clusters of1296

points of different classes. As illustrated in Figures 1.1c-1.1g, condensation algorithms1297

tend to select such points. However, this behavior implies a significant reduction of1298

the chromatic density of query points that are far from such boundaries, as can be1299

seen in Figures 5.1a-5.1b with the selection of the FCNN and RSS algorithms.1300

A natural way to define an approximate notion of consistency is to ensure that1301

all points in P are correctly classified by ANN queries over the condensed subset R.1302

Given a condensation parameter α ≥ 0, we define a subset R ⊆ P to be:1303

α-consistent if ∀ p ∈ P, dnn(p,R) < dne(p,R)/(1 + α).1304

α-selective if ∀ p ∈ P, dnn(p,R) < dne(p, P )/(1 + α).1305

It is easy to see that the standard forms arise as special cases when α = 0.1306

These new condensation criteria imply that δ(p,R) > α for every p ∈ P , meaning1307

that p is correctly classified using an α-ANN query on R. Note that any α-selective1308

subset is also α-consistent. Such subsets always exist for any α ≥ 0 by taking1309

R = P . Current condensation algorithms cannot guarantee either α-consistency or1310

α-selectiveness unless α is equal to zero. Therefore, the central algorithmic challenge1311

is how to efficiently compute such sets whose sizes are significantly smaller than P .1312

We propose new algorithms to compute such subsets, which showcase how to maintain1313

high chromatic density values after condensation, as evidenced in Figures 5.1c and1314

5.1d. This empirical evidence is matched with theoretical guarantees for α-consistent1315

and α-selective subsets, described in the following section.1316
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5.2.2 Guarantees on Classification Accuracy1317

These newly defined criteria for nearest-neighbor condensation enforce lower-1318

bounds on the chromatic density of any point of P after condensation. However, this1319

doesn’t immediately imply having similar lower-bounds for unlabeled query points of1320

X . In this section, we prove useful bounds on the chromatic density of query points,1321

and characterize sufficient conditions to correctly classify some of these query points1322

after condensation.1323

Intuitively, the chromatic density determines how easy it is to correctly classify1324

a query point q ∈ X . We show that the “ease” of classification of q after condensation1325

(i.e., δ(q, R)) depends on both the condensation parameter α, and the chromatic1326

density of q before condensation (i.e., δ(q, P )). This result is formalized in the1327

following lemma:1328

Lemma 5.2. Let q ∈ X be a query point, and R an α-consistent subset of P , for
α ≥ 0. Then, q’s chromatic density with respect to R is:

δ(q, R) >
α δ(q, P )− 2

δ(q, P ) + α + 3
.

Proof. The proof follows by analyzing q’s nearest-enemy distance in R. To this end,1329

consider the point p ∈ P that is q’s nearest-neighbor in P . There are two possible1330

cases:1331

Case 1: If p ∈ R, clearly dnn(q, R) = dnn(q, P ). Additionally, it is easy to show that af-1332

ter condensation, q’s nearest-enemy distance can only increase: i.e., dne(q, P ) ≤1333

dne(q, R). This implies that δ(q, R) ≥ δ(q, P ).1334

Case 2: If p ̸∈ R, we can upper-bound q’s nearest-neighbor distance in R as follows:1335

Since R is an α-consistent subset of P , we know that there exists a point r ∈
R such that d(p, r) < dne(p,R)/(1+α). By the triangle inequality and the definition of
nearest-enemy, dne(p,R) ≤ d(p, ne(q, R)) ≤ d(q, p)+dne(q, R). Additionally, applying
the definition of chromatic density on q and knowing that dne(q, P ) ≤ dne(q, R), we
have d(q, p) = dnn(q, P ) ≤ dnn(q, R) = dne(q, R)/(1 + δ(q, P )). Therefore:

dnn(q, R) ≤ d(q, r) ≤ d(q, p) + d(p, r)

< d(q, p) +
d(q, p) + dne(q, R)

1 + α
≤
(

δ(q, P ) + α + 3

(1 + α)(1 + δ(q, P ))

)
dne(q, R).

Finally, from the definition of δ(q, R), we have:1336

δ(q, R) =
dne(q, R)

dnn(q, R)
− 1 >

(1 + α)(1 + δ(q, P ))

δ(q, P ) + α + 3
− 1 =

α δ(q, P )− 2

δ(q, P ) + α + 3
.1337

The above result can be leveraged to define a coreset, in the sense that an exact1338

result on the coreset corresponds to an approximate result on the original set. As1339

previously defined, we say that a set R ⊆ P is an ε-coreset for the nearest-neighbor1340
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rule on P , if and only if for every query point q ∈ X , the class of q’s exact nearest-1341

neighbor in R is the same as the class of any of its ε-approximate nearest-neighbors1342

in P .1343

Lemma 5.3. Any ε-coreset for the nearest-neighbor rule is an α-consistent subset,1344

for α ≥ 0.1345

Proof. Consider any ε-coreset C ⊆ P for the nearest-neighbor rule on P . Since the1346

approximation guarantee holds for any point in X , it holds for any p ∈ P \ C. We1347

know p’s nearest-neighbor in the original set P is p itself, thus making dnn(p, P )1348

zero. This implies that p must be correctly classified by a nearest-neighbor query1349

on C, that is, dnn(p, C) < dne(p, C), which is the definition of α-consistency for any1350

α ≥ 0.1351

Theorem 5.4. Any 2/ε-selective subset is an ε-coreset for the nearest-neighbor rule.1352

Proof. Let R be an α-selective subset of P , where α = 2/ε. Consider any query1353

point q ∈ X in the metric space. It suffices to show that its nearest-neighbor in R is1354

of the same class as any ε-approximate nearest-neighbor in P . To this end, consider1355

q’s chromatic density with respect to both P and R, denoted as δ(q, P ) and δ(q, R),1356

respectively. We identify two cases:1357

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.1358

Consider the bound derived in Lemma 5.2. Since α ≥ 0, and by our assumption1359

that δ(q, P ) ≥ ε > 0, setting α = 2/ε implies that δ(q, R) > 0. This means that1360

the nearest-neighbor of q in R belongs to the same class as the nearest-neighbor1361

of q in P . Intuitively, this guarantees that q is correctly classified by the1362

nearest-neighbor rule in R.1363

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.1364

Let p ∈ P be q’s nearest-neighbor in P , thus d(q, p) = dnn(q, P ). Since R1365

is α-selective, there exists a point r ∈ R such that d(p, r) = dnn(p,R) <1366

dne(p, P )/(1 + α). Additionally, by the triangle inequality and the definition of1367

nearest-enemies, we have1368

dne(p, P ) ≤ d(p, ne(q, P )) ≤ d(p, q) + d(q, ne(q, P )) = dnn(q, P ) + dne(q, P ).

From the definition of chromatic density, dne(q, P ) = (1 + δ(q, P )) dnn(q, P ).
Together, these inequalities imply that (1 + α) d(p, r) ≤ (2 + δ(q, P )) dnn(q, P ).
Therefore:

dnn(q, R) ≤ d(q, r) ≤ d(q, p) + d(p, r) ≤
(
1 +

2 + δ(q, P )

1 + α

)
dnn(q, P ).

Now, assuming δ(q, P ) < ε and setting α = 2/ε, imply that dnn(q, R) <1369

(1 + ε) dnn(q, P ). Therefore, the nearest-neighbor of q in R is an ε-approximate1370

nearest-neighbor of q in P .1371
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Cases 1 and 2 imply that setting α to 2/ε is sufficient to ensure that the1372

nearest-neighbor rule classifies any query point q ∈ X with the class of one of its1373

valid ε-approximate nearest-neighbors in P . Therefore, R is an ε-coreset for the1374

nearest-neighbor rule on P .1375

So far, we have assumed that nearest-neighbor queries over R are computed1376

exactly, as this is the standard notion of coresets. However, it is reasonable to1377

compute nearest-neighbors approximately even for R. How should the two approxi-1378

mations be combined to achieve a desired final degree of accuracy? Consider another1379

approximation parameter ξ, where 0 ≤ ξ < ε. We say that a set R ⊆ P is an1380

(ξ, ε)-coreset for the approximate nearest-neighbor rule on P , if and only if for every1381

query point q ∈ X , the class of any of q’s ξ-approximate nearest-neighbor in R1382

is the same as the class of any of its ε-approximate nearest-neighbors in P . The1383

following result generalizes Theorem 5.4 to accommodate for ξ-ANN queries after1384

condensation.1385

Theorem 5.5. Any α-selective subset is an (ξ, ε)-coreset for the approximate nearest-1386

neighbor rule when α = Ω(1/(ε− ξ)).1387

Proof. This follows from similar arguments to the ones described in the proof of1388

Theorem 5.4. Instead, here we set α = (εξ+3ξ+2)/(ε− ξ). Let R be an α-selective1389

subset of P , and q ∈ X any query point in the metric space, consider the same two1390

cases:1391

Case 1 (Correct-Classification guarantee): If δ(q, P ) ≥ ε.1392

Consider the bound derived in Lemma 5.2. By our assumption that δ(q, P ) ≥1393

ε > 0, and since α ≥ 0, the following inequality holds true:1394

δ(q, R) >
α δ(q, P )− 2

δ(q, P ) + α + 3
≥ αε− 2

ε+ α + 3

Based on this, it is easy to see that the assignment of α = (εξ+3ξ+2)/(ε− ξ)1395

implies that δ(q, R) > ξ, meaning that any of q’s ξ-approximate nearest-1396

neighbors in R belong to the same class as q’s nearest-neighbor in P . Intuitively,1397

this guarantees that q is correctly classified by the ξ-ANN rule in R.1398

Case 2 (ε-Approximation guarantee): If δ(q, P ) < ε.1399

The assignment of α implies that dnn(q, R) < 1+ε
1+ξ

dnn(q, P ). This means that an1400

ξ-ANN query for q in R, will return one of q’s ε-approximate nearest-neighbors1401

in P .1402

All together, this implies that R is an (ξ, ε)-coreset for the nearest-neighbor rule on1403

P .1404

In contrast with standard condensation criteria, these new results provide1405

guarantees on either approximation or the correct classification, of any query point in1406

the metric space. This is true even for query points that were “hard” to classify with1407
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the entire training set, formally defined as query points with low chromatic density.1408

Consequently, Theorems 5.4 and 5.5 show that α must be set to large values if we1409

hope to provide any sort of guarantees for these query points. However, better results1410

can be achieved by restricting the set of points that are guaranteed to be correctly1411

classified. This relates to the notion of weak coresets, which provide approximation1412

guarantees only for a subset of the possible queries. Given β ≥ 0, we define Qβ as1413

the set of query points in X whose chromatic density with respect to P is at least1414

β (i.e., Qβ = {q ∈ X | δ(q, P ) ≥ β}). The following result describes the trade-off1415

between α and β to guarantee the correct classification of query points in Qβ after1416

condensation.1417

Theorem 5.6. Any α-consistent subset is a weak ε-coreset for the nearest-neighbor1418

rule for queries in Qβ, for β = 2/α. Moreover, all query points in Qβ are correctly1419

classified.1420

The proof of this theorem is rather simple, and follows the same arguments1421

outlined in Case 1 of the proof of Theorem 5.4. Basically, we use Lemma 5.2 to1422

show that for any query point q ∈ Qβ, q’s chromatic density after condensation1423

is greater than zero if αβ ≥ 2. Note that ε plays no role in this result, as the1424

guarantee on query points of Qβ is of correct classification (i.e., the class of its exact1425

nearest-neighbor in P ), rather than an approximation.1426

The trade-off between α and β is illustrated in Figure 5.2. From an initial1427

training set P ⊂ R2 (Figure 5.2a), we show the regions of R2 that comprise the setsQβ1428

for β = 2/α, using α = {0.1, 0.2,
√
2} (Figures 5.2b-5.2d). While evidently, increasing1429

α guarantees that more query points will be correctly classified after condensation,1430

this example demonstrates a phenomenon commonly observed experimentally: most1431

query points lie far from enemy points, and thus have high chromatic density with1432

respect to P . Therefore, while Theorem 5.4 states that α must be set to 2/ε to1433

provide approximation guarantees on all query points, Theorem 5.6 shows that much1434

smaller values of α are sufficient to provide guarantees on some query points, as1435

evidenced in the example in Figure 5.2.1436

(a) Set P (200 pts) (b) Q2/α for α = 0.1 (c) Q2/α for α = 0.2 (d) Q2/α for α =
√
2

Figure 5.2: Depiction of the Qβ sets for which any α-consistent subset is weak coreset
(β = 2/α). Query points in the yellow • areas are inside Qβ, and thus correctly
classified after condensation. Query points in the blue • areas are not in Qβ, and
have no guarantee of correct classification.
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These results establish a clear connection between the problem of condensation1437

and that of finding coresets for the nearest-neighbor rule, and provides a roadmap1438

to prove Theorem 5.1. This is the first characterization of sufficient conditions to1439

correctly classify any query point in X after condensation, and not just the points1440

in P (as the original consistency criteria implies). In the following section, these1441

existential results are matched with algorithms to compute α-selective subsets of P1442

of bounded cardinality.1443

5.3 Coreset Computation1444

5.3.1 Hardness Results1445

Define Min-α-CS to be the problem of computing an α-consistent subset of1446

minimum cardinality for a given training set P . Similarly, let Min-α-SS be the1447

corresponding optimization problem for α-selective subsets. Following known results1448

from standard condensation [10–12], when α is set to zero, the Min-0-CS and1449

Min-0-SS problems are both known to be NP-hard. Being special cases of the1450

general problems just defined, this implies that both Min-α-CS and Min-α-SS are1451

NP-hard.1452

Here we present results related to the hardness of approximation of both1453

problems, along with simple algorithmic approaches with tight approximation factors.1454

Theorem 5.7. The Min-α-CS problem is NP-hard to approximate in polynomial1455

time within a factor of 2(ddim(X ) log ((1+α)/γ))1−o(1)

.1456

The full proof is omitted, as it follows from a modification of the hardness1457

bounds proof for the Min-0-CS problem described in [36], which is based on a1458

reduction from the Label Cover problem. Proving Theorem 5.7 involves a careful1459

adjustment of the distances in this reduction, so that all the points in the construction1460

have chromatic density at least α. Consequently, this would imply that the minimum1461

nearest-enemy distance is reduced by a factor of 1/(1 + α), explaining the resulting1462

bound for Min-α-CS.1463

The NET algorithm [36] can also be generalized to compute α-consistent subsets1464

of P as follows. We define α-NET as the algorithm that computes a γ/(1 + α)-net1465

of P , where γ is the smallest nearest-enemy distance in P . The covering property1466

of nets [67] implies that the resulting subset is α-consistent, while the packing1467

property suggests that its cardinality is O
(
((1 + α)/γ)ddim(X )+1

)
, implying a tight1468

approximation to the Min-α-CS problem.1469

Theorem 5.8. The Min-α-SS problem is NP-hard to approximate in polynomial1470

time within a factor of (1− o(1)) lnn unless NP ⊆ DTIME(nlog logn).1471

Proof. The result follows from the hardness of another related covering problem: the1472

minimum dominating set [68–70]. We describe a simple L-reduction from any instance1473

of this problem to an instance of Min-α-SS, which preserves the approximation1474

ratio.1475
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1. Consider any instance of minimum dominating set, consisting of the graph1476

G = (V,E).1477

2. Generate a new edge-weighted graph G′ as follows:1478

Create two copies of G, namely Gr = (Vr, Er) and Gb = (Vb, Eb), of red and blue1479

nodes respectively. Set all edge-weights of Gr and Gb to be 1. Finally, connect1480

each red node vr to its corresponding blue node vb by an edge {vr, vb} of weight1481

1 + α + ξ for a sufficienly small constant ξ > 0. Formally, G′ is defined as the1482

edge-weighted graph G′ = (V ′, E ′) where the set of nodes is V ′ = Vr ∪ Vb, the1483

set of edges is E ′ = Er ∪ Er ∪ {{vr, vb} | v ∈ V }, and an edge-weight function1484

w : E ′ → R+ where w(e) = 1 iff e ∈ Er ∪ Eb, and w(e) = 1 + α + ξ otherwise.1485

3. A labeling function l where l(v) = red iff v ∈ Vr, and l(v) = blue iff v ∈ Vb.1486

4. Compute the shortest-path metric of G′, denoted as dG′ .1487

5. Solve the Min-α-SS problem for the set V ′, on metric dG′ , and the labels1488

defined by l.1489

A dominating set of G consists of a subset of nodes D ⊆ V , such that every1490

node v ∈ V \D is adjacent to a node in D. Given any dominating set D ⊆ V of1491

G, it is easy to see that the subset R = {vr, vb | v ∈ D} is an α-selective subset1492

of V ′, where |R| = 2|D|. Similarly, given an α-selective subset R ⊆ V ′, there is1493

a corresponding dominating set D of G, where |D| ≤ |R|/2, as D can be either1494

R ∩ Vr or R ∩ Vb. Therefore, Min-α-SS is as hard to approximate as the minimum1495

dominating set problem.1496

There is a clear connection between the Min-α-SS problem and covering1497

problems, in particular that of finding an optimal hitting set. Given a set of elements1498

U and a family C of subsets of U , a hitting set of (U,C) is a subset H ⊆ U such1499

that every set in C contains at least one element of H. Therefore, let Np,α be the1500

set of points of P whose distance to p is less than dne(p)/(1 + α), then any hitting1501

set of (P, {Np,α | p ∈ P}) is also an α-selective subset of P , and vice versa. This1502

simple reduction implies a O(n3) worst-case time O(log n)-approximation algorithm1503

for Min-α-SS, based on the classic greedy algorithm for set cover [71, 72]. Call this1504

approach α-HSS or α-Hitting Selective Subset. It follows from Theorem 5.8 that for1505

training sets in general metric spaces, this is the best approximation possible under1506

standard complexity assumptions.1507

While both α-NET and α-HSS compute tight approximations of their corre-1508

sponding problems, their performance in practice does not compare to heuristic1509

approaches for standard condensation (see Section 5.4 for experimental results).1510

Therefore, in the following subsections, we consider two practical algorithms for this1511

problem, namely SFCNN and RSS, and extend them to compute subsets with the1512

newly defined criteria.1513
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5.3.2 An Algorithm for α-Selective Subsets1514

For standard condensation, we have already analyzed the RSS algorithm (see1515

Chapter 4) used to compute selective subsets. It runs in quadratic worst-case time1516

and exhibits good performance in practice. The selection process of this algorithm is1517

heuristic in nature and can be described as follows: beginning with an empty set, the1518

points in p ∈ P are examined in increasing order with respect to their nearest-enemy1519

distance dne(p). The point p is added to the subset R if dnn(p,R) ≥ dne(p). It is easy1520

to see that the resulting subset is selective.1521

Now, we define a generalization called α-RSS, to compute α-selective subsets1522

of P . The condition to add a given point p ∈ P to the selected subset checks if any1523

previously selected point is closer to p than dne(p)/(1 + α), instead of just dne(p).1524

See Algorithm 10 for a formal description, and Figure 5.3 for an illustration. It is1525

easy to see that this algorithm computes an α-selective subset, while keeping the1526

quadratic time complexity of the original RSS algorithm.1527

Algorithm 10: α-RSS

Input: Initial training set P and parameter α ≥ 0
Output: α-selective subset R ⊆ P

1 R← ϕ
2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their nearest-enemy

distance dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if (1 + α) · dnn(pi, R) ≥ dne(pi) then
5 R← R ∪ {pi}

6 return R

Naturally, we want to analyze the number of points this algorithm selects. The1528

remainder of this section establishes upper-bounds and approximation guarantees of1529

the α-RSS algorithm for any doubling metric space, with improved results in the1530

Euclidean space. This proves the result mentioned in Chapter 4 that RSS computes1531

an approximation of the Min-0-CS and Min-0-SS problems.1532

5.3.2.1 Size in Doubling spaces1533

First, we consider the case where the underlying metric space (X , d) of P1534

is doubling. The following results depend on the doubling dimension ddim(X ) of1535

the metric space (which is assumed to be constant), the margin γ (the smallest1536

nearest-enemy distance of any point in P ), and κ (the number of nearest-enemy1537

points in P ).1538

Theorem 5.9. α-RSS computes a tight approximation for the Min-α-CS problem.1539

Proof. This follows from a direct comparison to the resulting subset of the α-NET1540

algorithm from the previous section. For any point p selected by α-NET, let Bp,α1541
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Figure 5.3: Selection of α-RSS for α=0.5. Faded points are not selected, while
selected points are drawn along with a ball of radius dne(p) (dotted outline) and a
ball of radius dne(p)/(1 + α) (solid outline). A point p is selected if no previously
selected point is closer to p than dne(p)/(1 + α).

be the set of points of P “covered” by p, that is, whose distance to p is at most1542

γ/(1 + α). By the covering property of ε-nets, this defines a partition on P when1543

considering every point p selected by α-NET.1544

Let R be the set of points selected by α-RSS, we analyze the size of Bp,α ∩R,1545

that is, for any given Bp,α how many points could have been selected by the α-RSS1546

algorithm. Let a, b ∈ Bp,α ∩ R be any two such points, where without loss of1547

generality, dne(a) ≤ dne(b). By the selection process of the algorithm, we know that1548

d(a, b) ≥ dne(b)/(1+α) ≥ γ/(1+α). A simple packing argument in doubling metrics1549

implies that |Bp,α ∩R| ≤ 2ddim(X )+1. Altogether, we have that the size of the subset1550

selected by α-RSS is O
(
(2(1 + α)/γ)ddim(X )+1

)
.1551

Theorem 5.10. α-RSS computes an O(log (min (1 + 2/α, 1/γ)))-factor approxima-1552

tion for the Min-α-SS problem. For α = Ω(1), this is a constant-factor approxima-1553

tion.1554

Proof. Let OPTα be the optimum solution to the Min-α-SS problem, i.e., the1555

minimum cardinality α-selective subset of P . For every point p ∈ OPTα in such1556

solution, define Sp,α to be the set of points in P “covered” by p, or simply Sp,α =1557

{r ∈ P | d(r, p) < dne(r)/(1 + α)}. Additionally, let R be the set of points selected1558

by α-RSS, define Rp,σ to be the points selected by α-RSS which also belong to Sp,α1559

and whose nearest-enemy distance is between σ and 2σ, for σ ∈ [γ, 1]. That is,1560
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Rp,σ = {r ∈ R ∩ Sp,α | dne(r) ∈ [σ, 2σ)}. Clearly, these subsets define a partitioning1561

of R for all p ∈ OPTα and values of σ = γ 2i for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.1562

However, depending on α, some values of σ would yield empty Rp,σ sets.1563

Consider some point q ∈ Sp,α, we can bound its nearest-enemy distance with respect1564

to the nearest-enemy distance of point p. In particular, by leveraging simple triangle-1565

inequality arguments, it is possible to prove that 1+α
2+α

dne(p) ≤ dne(q) ≤ 1+α
α

dne(p).1566

Therefore, the values of σ for which Rp,σ sets are not empty, are σ = 2j 1+α
2+α

dne(p)1567

for j = {0, . . . , ⌈log (1 + 2/α)⌉}.1568

The proof now follows by bounding the size of Rp,σ which can be achieved by1569

bounding its spread. Thus, lets consider the smallest and largest pairwise distances1570

among points in Rp,σ. Take any two points a, b ∈ Rp,σ where without loss of1571

generality, dne(a) ≤ dne(b). Note that points selected by α-RSS cannot be “too close”1572

to each other; that is, as a and b were selected by the algorithm, we know that1573

(1 + α) d(a, b) ≥ dne(b) ≥ σ. Therefore, the smallest pairwise distance in Rp,σ is at1574

least σ/(1+α). Additionally, by the triangle inequality, we can bound the maximum1575

pairwise distance using their distance to p as d(a, b) ≤ d(a, p) + d(p, b) ≤ 4σ/(1 + α).1576

Then, by the packing properties of doubling spaces, the size of Rp,σ is at most1577

4ddim(X )+1.1578

Altogether, for every p ∈ OPTα there are up to ⌈log (min (1 + 2/α, 1/γ))⌉ non-1579

empty Rp,σ subsets, each containing at most 4ddim(X )+1 points. In doubling spaces1580

with constant doubling dimension, the size of these subsets is also constant.1581

While these results are meaningful from a theoretical perspective, it is also1582

useful to establishing bounds in terms of the geometry of the learning space, which1583

is characterized by the boundaries between points of different classes. Thus, using1584

similar packing arguments as above, we bound the selection size of the algorithm1585

with respect to κ.1586

Theorem 5.11. α-RSS selects O
(
κ log 1

γ
(1 + α)ddim(X )+1

)
points.1587

Proof. This follows from similar arguments to the ones used to prove Theorem 5.10,1588

using an alternative charging scheme for each nearest-enemy point in the training set.1589

Consider one such point p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1], we define R′
p,σ to1590

be the subset of points from α-RSS whose nearest-enemy is p, and their nearest-enemy1591

distance is between σ and 2σ. That is, R′
p,σ = {r ∈ R | ne(r) = p ∧ dne(r) ∈ [σ, 2σ)}.1592

These subsets partition R for all nearest-enemy points of P , and values of σ = γ 2i1593

for i = {0, 1, 2, . . . , ⌈log 1
γ
⌉}.1594

For any two points a, b ∈ R′
p,σ, the selection criteria of α-RSS implies some1595

separation between selected points, which can be used to prove that d(a, b) ≥ σ/(1+α).1596

Additionally, we know that d(a, b) ≤ d(a, p) + d(p, b) = dne(a) + dne(b) ≤ 4σ. Using1597

a simple packing argument, we have that |R′
p,σ| ≤ ⌈4(1 + α)⌉ddim(X )+1.1598

Altogether, by counting all sets R′
p,σ for each nearest-enemy in the training set1599

and values of σ, the size ofR is upper-bounded by |R| ≤ κ ⌈log 1/γ⌉ ⌈4(1 + α)⌉ddim(X )+1.1600

Based on the assumption that ddim(X ) is constant, this completes the proof.1601
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As a corollary, this result implies that when α = 2/ε, the α-selective subset1602

computed by α-RSS contains O
(
κ log 1/γ (1/ε)ddim(X )+1

)
points. This establishes1603

the size bound on the ε-coreset given in Theorem 5.1, which can be computed using1604

the α-RSS algorithm.1605

5.3.2.2 Size in Euclidean space1606

In the case where P ⊂ Rd lies in d-dimensional Euclidean space, the analysis1607

of α-RSS can be further improved, leading to a constant-factor approximation of1608

Min-α-SS for values of α ≥ 0, and reduced dependency on the dimensionality of P .1609

Theorem 5.12. α-RSS computes an O(1)-approximation for the Min-α-SS problem1610

in Rd.1611

Proof. Similar to the proof of Theorem 5.10, defineRp = Sp,α∩R as the points selected1612

by α-RSS that are “covered” by p in the optimum solution OPTα. Consider two such1613

points a, b ∈ Rp where without loss of generality, dne(a) ≤ dne(b). By the definition of1614

Sp,α we know that d(a, p) < dne(a)/(1 + α), and similarly with b. Additionally, from1615

the selection of the algorithm we know that d(a, b) ≥ dne(b)/(1 + α). Overall, these1616

inequalities imply that the angle ∠apb ≥ π/3. By a simple packing argument, the1617

size of Rp is bounded by the kissing number in d-dimensional Euclidean space, or1618

simply O((3/π)d−1). Therefore, we have that |R| ≤
∑

p |Rp| = |OPTα| O((3/π)d−1).1619

Assuming d is constant, this completes the proof.1620

Figure 5.4: Training set where the analysis of the approximation factor
of α-RSS in Rd is tight.

This analysis is tight up to constant factors. In Figure 5.4, we illustrate1621

a training set P consisting of red and blue points in Rd, where α-RSS selects1622

Θ(cd−2 |OPTα|) points. Consider two helper points (which do not belong to P )1623

cr = 0u⃗d and cb = (1 + α)u⃗d, where u⃗d is the unit vector parallel to the d-th1624
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coordinate. Add red points ri on the surface of the d − 1 unit ball centered at cr1625

and perpendicular to u⃗d. Similarly with blue points bi around cb. Finally, add two1626

points r∗ = −ξu⃗d and b∗ = (1 + α+ ξ)u⃗d, for a suitable value ξ such that ∥r∗ri∥ < 1.1627

Clearly, the nearest-enemy distance of all ri and bi points is 1 + α, while the one of1628

r∗ and b∗ is strictly greater than 1 + α. Thus, OPTα = {r∗, b∗} but α-RSS selects1629

Θ(cd−2) points ri and bi at distance greater than 1 from each other.1630

Furthermore, a similar constant-factor approximation can be achieved for any1631

training set P in ℓp space for p ≥ 3. This follows analogously to the proof of1632

Theorem 5.12, exploiting the bounds between ℓp and ℓ2 metrics, where 1/
√
d ∥v∥p ≤1633

∥v∥2 ≤
√
d ∥v∥p. This would imply that the angle between any two points in α-RSSp1634

is Ω(1/d). Therefore, it shows that α-RSS achieves an approximation factor of1635

O(dd−1), or simply O(1) for constant dimension.1636

Similarly to the case of doubling spaces, we also establish upper-bounds in terms1637

of κ for the selection size of the algorithm in Euclidean space. The following result1638

improves the exponential dependence on the dimensionality of P (from ddim(Rd) =1639

Θ(d) to d− 1), while keeping the dependency on the margin γ, which contrast with1640

the approximation factor results.1641

Theorem 5.13. In Euclidean space Rd, α-RSS selects O
(
κ log 1

γ
(1 + α)d−1

)
points.1642

Proof. Let p be any nearest-enemy point of P and σ ∈ [γ, 1], similarly define R′
p,σ to1643

be the set of points selected by α-RSS whose nearest-enemy is p and their nearest-1644

enemy distance is between σ and bσ, for b = (1+α)2

α(2+α)
. Equivalently, these subsets1645

define a partitioning of R for all nearest-enemy points p and values of σ = γ bk for1646

k = {0, 1, 2, . . . , ⌈logb 1
γ
⌉}. Thus, the proof follows from bounding the minimum angle1647

between points in these subsets. For any two such points pi, pj ∈ R′
p,σ, we lower1648

bound the angle ∠pippj . Assume without loss of generality that dne(pi) ≤ dne(pj). By1649

definition of the partitioning, we also know that dne(pj) ≤ bσ ≤ b dne(pi). Therefore,1650

altogether we have that dne(pi) ≤ dne(pj) ≤ b dne(pi).1651

First, consider the set of points whose distance to pi is (1 + α) times their1652

distance to p, which defines a multiplicative weighted bisector [73] between points1653

p and pi, with weights equal to 1 and 1/(1 + α) respectively. This is characterized1654

as a d-dimensional ball (see Figure 5.5a) with center ci = (pi − p) b+ p and radius1655

dne(pi) b/(1 + α). Thus p, pi and ci are collinear, and the distance between p1656

and ci is d(p, ci) = b dne(pi). In particular, let’s consider the relation between pj1657

and such bisector. As pj was selected by the algorithm after pi, we know that1658

(1 + α) d(pj, pi) ≥ dne(pj) where dne(pj) = d(pj, p). Therefore, clearly pj lies either1659

outside or in the surface of the weighted bisector between p and pi (see Figure 5.5b).1660

For angle ∠pippj, we can frame the analysis to the plane defined by p, pi and1661

pj. Let x and y be two points in this plane, such that they are the intersection1662

points between the weighted bisector and the balls centered at p of radii dne(pi) and1663

b dne(pi) respectively (see Figure 5.5c). By the convexity of the weighted bisector1664

between p and pi, we can say that ∠pippj ≥ min(∠xppi,∠ypcj). Now, consider1665

the triangles △pxpi and △pyci. By the careful selection of b, these triangles are1666

both isosceles and similar. In particular, for △pxpi the two sides incident to p have1667
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(a) Multiplicatively
weighted bisectors for
different weights.

(b) Position of point pj
w.r.t. the weighted bisector
between points p and pi.

(c) The intersection points x and
y between the weighted bisector
and the limit balls of Rp,σ.

Figure 5.5: Construction for the analysis of the minimum angle between two points
in R′

p,σ w.r.t. some nearest-enemy point p ∈ P . Let points pi, pj ∈ R′
p,σ, we analyze

the angle ∠pippj.

length equal to dne(pi), and the side opposite to p has length equal to dne(pi)/(1+α).1668

For △pyci, the side lengths are b dne(pi) and dne(pi) b/(1 + α). Therefore, the angle1669

∠pippj ≥ ∠xppi ≥ 1/(1 + α).1670

By a simple packing argument based on this minimum angle, we have that the1671

size of R′
p,σ is O((1 + α)d−1). All together, following the defined partitioning, we1672

have that:1673

|R| =
∑
p

⌈logb 1
γ
⌉∑

k=0

|R′
p,bk | ≤ κ

⌈
logb

1

γ

⌉
O
(
(1 + α)d−1

)
For constant α and d, the size of α-RSS is O(κ log 1

γ
). Moreover, when α is1674

zero α-RSS selects O(κ cd−1), matching the bound presented in Chapter 4 for RSS1675

in Euclidean space.1676

5.3.2.3 Subquadratic Implementation1677

Here we present a subquadratic implementation for the α-RSS algorithm, which1678

completes the proof of our main result, Theorem 5.1. Prior to this result , among1679

algorithms for nearest-neighbor condensation, FCNN and SFCNN achieve the best1680

worst-case time complexity, running in O(nm) time, where m = |R| is the size of1681

the selected subset.1682

The α-RSS algorithm consists of two main stages: computing the nearest-enemy1683

distances of all points in P (and sorting the points based on these), and the selection1684

process itself. The first stage requires a total of n nearest-enemy queries, plus1685

additional O(n log n) time for sorting. The second stage performs n nearest-neighbor1686

queries on the current selected subset R, which needs to be updated m times. In1687

both cases, using exact nearest-neighbor search would degenerate into linear search1688

due to the curse of dimensionality. Thus, the first and second stage of the algorithm1689

would need O(n2) and O(nm) worst-case time respectively.1690
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These bottlenecks can be overcome by leveraging approximate nearest-neighbor1691

techniques. Clearly, the first stage of the algorithm can be improved by computing1692

nearest-enemy distances approximately, using as many ANN structures as classes1693

there are in P , which is considered to be a small constant. Therefore, by also applying1694

a simple brute-force search for nearest-neighbors in the second stage, result (i) of1695

the next theorem follows immediately. Moreover, by combining this with standard1696

techniques for static-to-dynamic conversions [74], we have result (ii) below. Denote1697

this variant of α-RSS as (α, ξ)-RSS, for a parameter ξ ≥ 0.1698

Theorem 5.14. Given a data structure for ξ-ANN searching with construction time1699

tc and query time tq (which potentially depend on n and ξ), the (α, ξ)-RSS variant1700

can be implemented with the following worst-case time complexities, where m is the1701

size of the selected subset.1702

(i) O (tc + n (tq +m+ log n))1703

(ii) O ((tc + n tq) log n)1704

More generally, if we are given an additional data structure for dynamic ξ-1705

ANN searching with construction time t′c, query time t′q, and insertion time t′i, the1706

overall running time will be O
(
tc + t′c + n (tq + t′q + log n) +mt′i

)
. Indeed, this can1707

be used to obtain (ii) from the static-to-dynamic conversions [74], which propose an1708

approach to convert static search structures into dynamic ones. These results directly1709

imply implementations of (α, ξ)-RSS with subquadratic worst-case time complexities,1710

based on ANN techniques [43, 75] for low-dimensional Euclidean space, and using1711

techniques like LSH [50] that are suitable for ANN in high-dimensional Hamming1712

and Euclidean spaces. More generally, subquadratic runtimes can be achieved by1713

leveraging techniques [76] for dynamic ANN search in doubling spaces.1714

Algorithm 11: (α, ε)-RSS

Input: Initial training set P and parameters α, ε ≥ 0
Output: α-selective subset R ⊆ P

1 R← ϕ
2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. their approximate

nearest-enemy distance dne(pi, ε)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if (1 + α)(1 + ε) · dnn(pi, R, ε) ≥ dne(pi, ε) then
5 R← R ∪ {pi}

6 return R

It remains unclear how these new implementations of the algorithm would1715

deal with “uncertainty”. That is, such implementation schemes for α-RSS would1716

incur an approximation error (of up to 1 + ξ) on the computed distances: either1717

only during the first stage if (i) is implemented, or during both stages if (ii) or the1718

dynamic-structure scheme are implemented. The uncertainty introduced by these1719
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approximate queries, imply that in order to guarantee finding α-selective subsets, we1720

must modify the condition for adding point during the second stage of the algorithm.1721

Let dne(p, ξ) denote the ξ-approximate nearest-enemy distance of p computed in the1722

first stage, and let dnn(p,R, ξ) denote the ξ-approximate nearest-neighbor distance of1723

p over points of the current subset (computed in the second stage). Then, (α, ξ)-RSS1724

adds a point p into the subset if (1 + ξ)(1 + α) dnn(p,R, ξ) ≥ dne(p, ξ).1725

By similar arguments to the ones described in Section 5.3.2, size guarantees1726

can be extended to (α, ξ)-RSS. First, the size of the subset selected by (α, ξ)-RSS,1727

in terms of the number of nearest-enemy points in the set, would be bounded by the1728

size of the subset selected by α̂-RSS with α̂ = (1 + α)(1 + ξ)2 − 1. Additionally, the1729

approximation factor of (α, ξ)-RSS in both doubling and Euclidean metric spaces1730

would increase by a factor of O((1 + ξ)2(ddim(X )+1)).1731

This completes the proof of Theorem 5.1.1732

Lemma 5.15. There exist a data structure for dynamic ξ-ANN queries in sets P1733

in d-dimensional Euclidean space, that can be constructed in t′c = O(n log n) time,1734

queried in t′q = O(log n + 1/ξd−1) time, and where points of P can be inserted in1735

t′i = O(log n) time.1736

Together with Theorem 5.14 described above, this lemma implies that there is1737

a variant of α-RSS for Euclidean space that runs in O(n log n+ n/ξd−1) time. Such1738

data structure can be build from a standard BBD tree [42, 77] as follows. First,1739

construct the tree from the entire set P , thus taking t′c = O(n log n) time. However,1740

each node of the tree has some additional data: a boolean flag indicating if the1741

subtree rooted at such node contains a point of the “active” subset R. Initially,1742

all flags are set to false, making the initial active subset being empty. To add a1743

point p ∈ P to the active subset R, all the flags from the root of the tree to the leaf1744

node containing p must be set to true, thus making the insertion time t′i = O(log n).1745

Finally, an ξ-ANN query on such tree would perform as usual, only avoiding to visit1746

nodes whose flag is set to false, yielding a query time of t′q = O(log n+ 1/ξd−1).1747

5.3.3 An Algorithm for α-Consistent Subsets1748

Even thought the main result of this chapter relies on the computation of α-1749

selective subsets, Theorem 5.6 shows that even α-consistency is enough to guarantee1750

the correct classification of certain query points. In practice, FCNN [16] has been1751

acknowledged as the most efficient algorithm for computing consistent subsets. From1752

the results presented in Chapter 4, we know that while FCNN cannot be upper-1753

bounded in terms of k or κ, the simple modification of this algorithm called SFCNN1754

can be successfully upper-bounded. Therefore, in this section, we discuss a simple1755

extension of this algorithm in order to compute α-consistent subsets.1756

Recall the workings of both the FCNN and SFCNN algorithms, which select1757

points iteratively as follows. First, the subset R is initialized with one point per class1758

(e.g., the centroids of each class). During every iteration, the algorithm identifies all1759

the points in P that are incorrectly classified with the current R, or simply, those1760
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whose nearest-neighbor in R is of different class. This is formalized as the voren1761

function, defined for every point p ∈ R as follows:1762

voren(p,R, P ) = {q ∈ P | nn(q, R) = p ∧ l(q) ̸= l(p)}

This function identifies all the enemies of p whose nearest-neighbor in R is p1763

itself. The only difference between the original FCNN algorithm and the modified1764

SFCNN appears next. While FCNN adds one point per each p ∈ R in a batch2,1765

potentially doubling the size of R, SFCNN adds only one point per iteration. Then,1766

both algorithms terminate when no other points can be added (i.e., all voren(p,R, P )1767

are empty), implying that R is consistent.1768

We can now extend both algorithms to compute α-consistent subsets, namely1769

α-FCNN and α-SFCNN, by redefining the voren function. The idea is simple: to1770

identify those points whose nearest-neighbor in R is p, such that are either enemies1771

of p, or whose chromatic density with respect to R is less than α. This is formally1772

defined as follows:1773

voren(α, p,R, P ) = {q ∈ P | nn(q, R) = p ∧ (l(q) = l(p)⇒ δ(q, R) < α)}

By plugging this function into the algorithms (see Algorithm 12), it is easy1774

to show that the resulting subsets are α-consistent. Moreover, this can be easily1775

implemented to run in O(nm) worst-case time, where m is the final size of R,1776

extending the implementation scheme described in the paper where FCNN was1777

initially proposed [16].1778

Algorithm 12: α-SFCNN

Input: Initial training set P and parameter α ≥ 0
Output: α-consistent subset R ⊆ P

1 R← ϕ
2 S ← centroids(P )
3 while S ̸= ϕ do
4 R← R ∪ {Choose one point of S}
5 S ← ϕ
6 foreach p ∈ R do
7 S ← S ∪ {rep(p, voren(α, p,R, P ))}

8 return R

Finally, leveraging the analysis described in Section 4.3.3, together with the1779

proofs of Theorems 5.9 and 5.11, we upper-bound the selection size of the α-SFCNN1780

algorithm. The proofs of the next results depend on the following observation. Let1781

a, b ∈ R be two points selected by α-SFCNN, where dne(a), dne(b) ≥ β for some1782

β ≥ 0, it is easy to show that d(a, b) ≥ β/(1 + α). This follows from a fairly simple1783

2For FCNN, line 4 of Algorithm 12 updates R by adding all the points in S, instead of only one
point of S.
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argument: to the contrary, suppose that d(a, b) < β/(1+α), which would imply that1784

a and b belong to the same class. Without loss of generality, point a was added to R1785

before point b. Note that after adding point a to R, the chromatic density of b w.r.t.1786

R is δ(b, R) > α, which contradicts the statement that b could be added to R.1787

Theorem 5.16. α-SFCNN computes a tight approximation for the Min-α-CS1788

problem.1789

This result follows by similar arguments as the proof of Theorem 5.9. By1790

considering any two points a, b ∈ Bp,α ∩R, we know that d(a, b) ≥ γ/(1 + α) as γ is1791

the smallest nearest-enemy distance in P . This implies α-SFCNN can select up to1792

2ddim(X )+1 times more points as the α-NET algorithm, which yields the proof.1793

Theorem 5.17. α-SFCNN selects O
(
κ log 1

γ
(1 + α)ddim(X )+1

)
points.1794

Similarly, this result can be proven using the same arguments outlined to prove1795

Theorem 5.11. After partitioning the selection of α-SFCNN into O(κ log 1/γ) subsets,1796

consider any two points a, b in one of these subsets, where dne(a), dne(b) ∈ [σ, 2σ), for1797

some σ ∈ [γ, 1]. Therefore, we can show that d(a, b) ≥ σ/(1 + α), which implies that1798

each subset in the partitioning contains at most ⌈4(1 + α)⌉ddim(X )+1 points. This1799

yields the proof.1800

5.4 Experimental Comparison1801

In order to get a clearer impression of the relevance of these results in practice,1802

we performed experimental trials on several training sets, both synthetically generated1803

and widely used benchmarks. First, we consider 21 training sets from the UCI1804

Machine Learning Repository3 which are commonly used in the literature to evaluate1805

condensation algorithms [18]. These consist of a number of points ranging from 1501806

to 58000, in d-dimensional Euclidean space with d between 2 and 64, and 2 to 261807

classes. We also generated some synthetic training sets, containing 105 uniformly1808

distributed points, in 2 to 3 dimensions, and 3 classes. All training sets used in1809

these experimental trials are summarized in Table 4.2. The implementation of the1810

algorithms, training sets used, and raw results, are publicly available4.1811

These experimental trials compare the performance of different condensation1812

algorithms when applied to vastly different training sets. We use two measures of1813

comparison on these algorithms: their runtime in the different training sets, and1814

the size of the subset selected. Clearly, these values might differ greatly on training1815

sets whose size are too distinct. Therefore, before comparing the raw results, these1816

are normalized. The runtime of an algorithm for a given training set is normalized1817

by dividing it by n, the size of the training set. The size of the selected subset is1818

normalized by dividing it by κ, the number of nearest-enemy points in the training1819

set, which characterizes the complexity of the boundaries between classes.1820

3https://archive.ics.uci.edu/ml/index.php
4https://github.com/afloresv/nnc/
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5.4.1 Algorithm Comparison1821

The first experiment evaluates the performance of the five algorithms discussed1822

in this chapter: α-RSS, α-FCNN, α-SFCNN, α-HSS, and α-NET. The evaluation is1823

carried out by varying the value of the α parameter from 0 to 1, to understand the1824

impact of increasing this parameter. The implementation of α-HSS uses the well-1825

known greedy algorithm for set cover [71], and solves the problem using the reduction1826

described in Section 5.3.1. In the other hand, recall that the original NET algorithm1827

(for α = 0) implements an extra pruning technique to further reduce the training set1828

after computing the γ-net [36]. For a fair comparison, we implemented the α-NET1829

algorithm with a modified version of this pruning technique that guarantees that the1830

selected subset is still α-selective.1831

The results show that α-RSS outperforms the other algorithms in terms of1832

running time by a big margin, and irrespective of the value of α (see Figure 5.6a).1833

Additionally, the number of points selected by α-RSS, α-FCNN, and α-SFCNN is1834

comparable to α-HSS, which guarantees the best possible approximation factor in1835

general metrics, while α-NET is significantly outperformed.1836

(a) Running time. (b) Size of the selected subsets.

Figure 5.6: Comparison α-RSS, α-FCNN, α-SFCNN, α-NET, and α-HSS, for differ-
ent values of α.

5.4.2 Subquadratic Approach1837

Using the same experimental framework, we evaluate performance of the1838

subquadratic implementation (α, ξ)-RSS described in Section 5.3.2.3. In this case,1839

we change the value of parameter ξ to assess its effect on the running time and1840

selection size over the algorithm, for two different values of α (see Figure 5.7). The1841

results show an expected increase of the number of selected points, while significantly1842

improving its running time.1843

63



(a) Running time. (b) Size of the selected subsets.

Figure 5.7: Evaluating the effect of increasing the parameter ξ on (α, ξ)-RSS for
α = {0, 0.2}.
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Chapter 6: Chromatic Approximate Voronoi Diagram1844

6.1 Introduction1845

As evidenced from the previous chapters, a common approach towards dealing1846

with nearest-neighbor classification, is to reduce this problem to the one of nearest-1847

neighbor search. That is, taking the initial training set P and using any out-of-the-box1848

solution for computing nearest-neighbors of P , like AVDs [19, 20], LSH [21], and1849

HNSW graphs [22]. Assuming this reduction for nearest-neighbor classification, there1850

are only two ways of having more efficient queries. The first, by preprocessing the1851

training set via some condensation algorithm or by computing an ε-coresets, as1852

described in Chapters 3 to 5. The second option is to improve the complexity of1853

nearest-neighbor search techniques (usually involving approximate solutions), which1854

is a known and extensive line of research.1855

In this chapter we explore an alternative approach towards efficient nearest-1856

neighbor classification. The idea then is to avoid reducing this problem to the one of1857

nearest-neighbor search, but instead proposing an approach that directly computes1858

the predicted class. Therefore, our approach would bypass the preprocessing of the1859

training set, and build a tailor-made data structure for approximate nearest-neighbor1860

classification. Formally, we are given training set P in a metric space (X , d) and an1861

approximation parameter 0 < ε ≤ 1
2
, and the goal is to construct a data structure so1862

that given any query point q ∈ X , it is possible to efficiently classify q according to1863

any valid ε-approximate nearest-neighbor of q in P . Throughout, we take domain X1864

to be the d-dimensional Euclidean space Rd, distance function d to be the L2 norm,1865

and we assume that the dimension d is a fixed constant, independent of n and ε.1866

These results have been published in [78].1867

Related Work1868

When working with ε-approximate nearest-neighbor searching (ε-ANN), the1869

objective is to compute a point whose distance from the query point is within a1870

factor of 1 + ε of the true nearest-neighbor. This problem, referred to as “standard1871

ANN” throughout this chapter, has been widely studied. In chromatic ε-ANN search1872

the objective is to return just the class (or more visually, the “color”) of any such1873

point [51]. We refer to this as ε-classification, and it is the focus of this chapter.1874

Clearly, chromatic ANN queries can be reduced to standard ANN queries.1875

Hence, most of the efficiency improvements in nearest-neighbor classification have1876

arisen from improvements to the standard ANN problem. While standard ANN1877
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has been well studied in high-dimensional spaces (see, e.g., [21, 22,50]), in constant-1878

dimensional Euclidean space, the most efficient data structures involve variants of1879

the Approximate Voronoi Diagram (or AVD) (see [19,20,43,75]). Mount et al. [51]1880

proposed a data structure specifically tailored for ε-classification. Unfortunately,1881

this work was based on older technology, and its results are not competitive when1882

compared to the most recent advances on standard ANN search via AVDs.1883

All previous results have query and space complexities that depend on n, the1884

total size of the training set P . In many cases, a much smaller portion of the training1885

set may suffice to correctly ε-classify queries. In the exact setting, these smaller set1886

of points would be the set of border points of P , of size k, which are the ones that1887

define the boundaries between classes. Moreover, the concept of border points can be1888

generalized in the context of ε-classification (see Section 6.2 for a formal definition).1889

Thus, denote kε as the number of ε-border points, where k ≤ kε ≤ n. Ideally, we1890

would like the query and space complexities of answering chromatic ε-ANN queries1891

to depend on kε instead of n.1892

There are different approaches to achieve this goal via training set reduction,1893

as described in Chapters 3 to 5. In general, the idea in such case would be to select1894

a subset R ⊆ P , which is then used to build a standard AVD to answer ε-ANN1895

queries over R. However, depending on the approach, one obtains different subset1896

sizes and classification guarantees. From the condensation heuristics described in1897

Chapter 4, we know that it is possible to compute subsets R of size O(k) in O(n2)1898

time. However, when AVDs are built from these subsets, the resulting data structures1899

are likely to introduce classification errors, especially for query points that should be1900

easily ε-classified (as described in Chapter 5). Thus, while often used in practice,1901

these approaches do not guarantee that chromatic ε-ANN queries are answered1902

correctly. The second approach would involve computing a coreset for ε-classification,1903

as defined in Chapter 5. Recall that a coreset R guarantees that every query point1904

will be correctly classified when assigning the class of the point of R returned by the1905

AVD. That is, for any query q ∈ Rd, the point of R returned by the AVD belongs to1906

the same class as one of q’s ε-approximate nearest-neighbors in P . Unfortunately,1907

the size of the described coreset can be as large as O((k log∆)/εd−1), where ∆ is1908

the spread of P .1909

Contributions1910

From the previous section, we have seen that existing approaches for ε-1911

classification achieve only one of the following goals:1912

• The size of the resulting data structure is dependent only on ε, kε (the number1913

of ε-border points) and d, while being independent from n and ∆.1914

• It guarantees correct ε-classification for any query point.1915

The main result of this chapter is an approach that achieves both goals. We1916

propose a new data structure built specifically to answer chromatic ε-ANN queries1917

over the training set P , which we call a Chromatic AVD. Given any query point1918
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q ∈ Rd, this data structure returns the class to be assigned to q, which matches the1919

class of at least one of q’s ε-approximate nearest-neighbors in P . More generally,1920

our data structure returns a set of classes such that there is an ε-approximate1921

nearest-neighbor of q from each of these classes.1922

Therefore, the Chromatic AVD can be used to correctly ε-classify any query1923

point. The main result of this work is summarized in the following theorem, expressed1924

in the form of a space-time tradeoff based on a parameter γ.1925

Theorem 6.1. Given a training set P of n labeled points in Rd, an error parameter1926

0 < ε ≤ 1
2
, and a separation parameter 2 ≤ γ ≤ 1

ε
. Let kε be the number of ε-border1927

points of P . There exists a data structure for ε-classification, called Chromatic AVD,1928

with:1929

Query time: O

(
log (kεγ) +

1

(εγ)
d−1
2

)
Space: O

(
kεγ

d log
1

ε

)
.

Which can be constructed in time Õ
((

n+ kε/(εγ)
3
2
(d−1)

)
γd log 1

ε

)
.1930

(a) Standard AVD [19,20,43,75]. (b) Chromatic AVD.

Figure 6.1: Examples of the space partitioning achieved by any standard AVD,
compared to the Chromatic AVD data structure proposed in this chapter. Our
approach subdivides the space around the boundaries defined by the ε-border points,
while ignoring other boundaries.

By setting γ to either of its extreme values, we obtain the following query times1931

and space complexities.1932

Corollary 6.2. The separation parameter γ describes the tradeoffs between the query
time and space complexity of the Chromatic AVD. This yields the following results:

If γ = 2 −→ Query time: O
(
log kε +

1

ε
d−1
2

)
Space: O

(
kε log

1

ε

)
.

If γ =
1

ε
−→ Query time: O

(
log

kε
ε

)
Space: O

(
kε
εd

)
.
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The approach towards constructing this data structure is hybrid, combining1933

a quadtree-induced partitioning of space (leveraging similar techniques to the ones1934

used for standard AVDs), with the construction of coresets for only some cells of this1935

partition. All other cells can be discarded, and a new quadtree can be built with1936

only the remaining cells. The final size of the tree is bounded in terms of kε. This1937

technique allows us to maintain coresets in the most critical regions of space, and1938

thus, avoiding the dependency on the spread of P .1939

6.2 Preliminary Ideas and Intuition1940

First, we need to introduce some preliminary definitions and notations that1941

are relevant to the results presented in the remaining of the chapter. Given any1942

point q ∈ Rd, denote its nearest-neighbor as nn(q), and the distance between them1943

by dnn(q) = d(q, nn(q)).1944

Additionally, let’s introduce a few concepts and related properties that will1945

prove useful in the construction of the Chromatic AVD. These are Well-Separated1946

Pair Decompositions [79] (WSDPs), Quadtrees [48,80], and Approximate Voronoi1947

Diagrams [19,20,43,75] (AVDs).1948

Well-Separated Pair Decompositions: Given the point set P , and a separation factor1949

σ > 2, we say that two sets X, Y ⊆ P are well separated if they can be enclosed1950

within two disjoint balls of radius r, such that the distance between the centers1951

of these balls is at least σr. We say that X and Y form a dumbbell, where both1952

sets are the heads of this dumbbell. Consider the line segment that connects1953

the centers of both balls, and let z and ℓ be the center and length of this line1954

segment, respectively (i.e., the center and the length of the dumbbell). The1955

following properties hold when σ > 4, for x ∈ X and y ∈ Y :1956

d(x, z) < ℓ ℓ < 2d(x, y) ℓ > d(x, y)/2.1957

Furthermore, a well-separated pair decomposition of P is defined as a set1958

D = {(Xi, Yi)}i where every Xi and Yi are well separated, and for every two1959

distinct points p1, p2 ∈ P there exists a unique pair P = (X, Y ) ∈ D such that1960

p1 ∈ X and p2 ∈ Y , or vice-versa. It is known how to construct a WSPD of P1961

with O(σdn) pairs in O(n log n+ σdn) time.1962

Quadtrees: These are tree data structures that provide a hierarchical partition of1963

space. Each node in this tree consists of a d-dimensional hypercube, where1964

non-leaf nodes partition its corresponding hypercube into 2d equal parts. The1965

root of this tree corresponds to the [0, 1]d hypercube. We will use a variant of1966

this structure called a balanced box-decomposition tree (BBD tree) [42]. Such1967

data structure satisfies the following properties:1968

1. Given a point set P , such a tree can be built in O(n log n) time, having1969

space O(n) such that each leaf node contains at most one point of P .1970
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2. Given a collection U of n quadtree boxes in [0, 1]d, such a tree can be built1971

in O(n log n) time, having O(n) nodes such that the subdivision induced1972

by its leaf cells is a refinement of the subdivision induced by the Quadtree1973

boxes in U .1974

3. Given the trees from 1 or 2, it is possible to determine the leaf cell1975

containing any arbitrary query point q in O(log n) time.1976

Approximate Voronoi Diagram: Generally, AVDs are quadtree-based data structures1977

that can be used to efficiently answer ANN queries. The partitioning of1978

space induced by this data structure is often generated from a WSPD of1979

P . Additionally, every leaf cell w of this quadtree has an associated set of1980

ε-representatives Rw that has the following property: for any query point q ∈ w,1981

at least one point in Rw is one of q’s ε-approximate nearest-neighbors in P .1982

New Ideas and Intuitions. Consider the space partitioning induced by a1983

standard AVD, as previously described. By construction, any leaf cell w of this1984

partition has an associated set of ε-representatives Rw. Evidently, for the purposes1985

of ε-classification, the most important information related to this leaf cell comes1986

from the classes of the points in Rw, and not necessarily the points themselves.1987

This leads to an initial approach to simplify an AVD. We distinguish between1988

two types of leaf cells, based on the points inside their corresponding ε-representative1989

sets. Any leaf cell w is said to be:1990

• Resolved: If every point in Rw belongs to the same class.1991

• Ambiguous: Otherwise, if at least two points in Rw belong to different classes.1992

Clearly, there is no need to store the set of ε-representatives of any resolved1993

leaf cell, as instead, we can simply mark the leaf cell w as resolved with the class1994

that is shared by all the points in Rw. This effectively reduces the space needed for1995

such cells to be constant.1996

Furthermore, it seems that the bulk of the “work” needed to decide the class1997

of a given query point can be carried out by the ambiguous leaf cells, along with1998

some groupings of resolved leaf cells. The data structure presented in this chapter,1999

called Chromatic AVD, builds upon this hypothesis.2000

Additionally, we formally define the set of ε-border points of the training set2001

P . This set, denoted as Kε, contains any point p ∈ P for which there exist some2002

q ∈ Rd and p̄ ∈ P , such that p and p̄ are ε-approximate nearest-neighbors of q, and2003

both belong to different classes. Denote kε = |Kε| as the number of ε-border points2004

of the training set P . Note that Kε ⊆ Kε′ if and only if ε ≤ ε′. Additionally, note2005

that K0 defines the set of (exact) border points of P , where k = k0.2006

This generalization of the definition of border points seems better suited to2007

analyze the problem of ε-classification, as illustrated in Figure 6.2. Figure 6.2b shows2008

the ε-approximate bisectors between the two closest and two farthest points (the first2009

two belong to K0, while the others belong to Kε but not K0). A hypothetical leaf2010

cell w is sufficiently separated from the only two exact border points, but intersects2011

69



(a) (b)

Figure 6.2: Intuition to assume that Kε (and not K0) is needed to ε-classify some
query points.

the ε-approximate bisectors between the two farthest points. This implies that inside2012

the cell w lie query points that can only be ε-classified with one class, and others2013

with the other class, forcing this cell to be ambiguous. This suggests that K0 is2014

insufficient to account for the necessary complexity of ε-classification.2015

6.3 Chromatic AVD Construction2016

In this section, we describe our method for constructing the proposed Chromatic2017

AVD. The following overview outlines the necessary steps followed to construct this2018

data structure.2019

• The Build step (Section 6.3.1): Consists of building an initial quadtree-based2020

subdivision of space, designed specifically to achieve the properties described2021

in Lemma 6.3.2022

• The Reduce step (Section 6.3.2): Seeks to identify the leaf cells of the initial2023

subdivision that are relevant for ε-classification, as well as those that can be2024

ignored or simplified. This process consists of the following substeps.2025

– Computing the sets of ε-representatives for every leaf cell of the initial2026

quadtree.2027

– Based on these sets, marking the leaf cells as either ambiguous or resolved.2028

– Selecting those leaf cells which are relevant for ε-classification.2029

– Building a new quadtree-based subdivision using the previously selected2030

leaf cells.2031

6.3.1 The Build Step2032

We begin by constructing the tree Tinit using similar methods as the ones used2033

to construct a standard AVD. Thus, the first step is to compute a well-separated2034
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pair decomposition D of P using a constant separation factor of σ > 4. While the2035

standard construction would use all pairs in this decomposition, for the purpose of2036

the Chromatic AVD, we filter D to only keep bichromatic pairs. Denote D′ ⊆ D to2037

be the set of bichromatic pairs in D, where a pair P ∈ D is said to be bichromatic if2038

and only if the dumbbell heads separate points of different classes. Note that D′ can2039

be computed similarly to D, using a simple modification of the well-known algorithm2040

for computing WSPDs [79] (the details are left to the reader).2041

Next, we compute an initial set of quadtree boxes U(P) for every pair in D′
2042

as follows. This construction depends on two constants c1 and c2 whose assignment2043

will be described later in this section. For 0 ≤ i ≤ ⌈log (c1 1/ε)⌉, we define bi(P) as2044

the ball centered at z of radius ri = 2iℓ. Thus, this set of balls involves radius values2045

ranging from ℓ to Θ(ℓ/ε). For each such ball bi(P), let Ui(P) be the set of quadtree2046

boxes of size ri/(c2γ) that overlap the ball. Let U(P) denote the union of all these2047

boxes over all the O(log 1/ε) values of i.2048

After performing this process on every pair of the filtered decomposition D′,2049

take the union of all these boxes denoted as U =
⋃

P∈D′ U(P). Finally, build the tree2050

Tinit from the set of quadtree boxes U , leveraging property 2 of quadtrees described2051

in Section 6.2. Additionally, for each class i in the training set, build an auxiliary2052

tree T i
aux from the point set Pi (i.e., the points of P of that are labeled with class i),2053

using property 1 of quadtrees. These auxiliary trees will be used together with Tinit2054

in order to build our final tree T , the Chromatic AVD.2055

While the standard AVD construction satisfies that all resulting leaf cells of2056

the tree have certain separation properties from the points of set P , the same is not2057

true for tree Tinit. However, the following result describes a relaxed notion of the2058

separation properties, now based on the classes of the points, which are achieved by2059

Tinit.2060

Lemma 6.3 (Chromatic Separation Properties). Given two separation parameters2061

γ > 2 and φ > 3, every leaf cell w of the tree Tinit satisfies at least one of the2062

following separation properties, where bw is the minimum enclosing ball of w:2063

(i) P ∩ γbw is empty (see Figure 6.3a), and hence bw is concentrically γ-separated2064

from P .2065

(ii) The cell w can be resolved with the classes present inside P ∩ φbw (see Fig-2066

ure 6.3b).2067

Proof. Let w be any leaf cell of Tinit, with center cw and side length sw, where its2068

(minimum) enclosing ball bw has radius rw =
√
d/2 sw and shares the center cw.2069

Additionally, let xi ∈ Pi be a 1-approximate nearest-neighbor of cw among the points2070

of P of class i. In other words, for each class of points we use the auxiliary trees T i
aux2071

to compute a 1-approximate nearest-neighbor of cw. A few cases unfold from here:2072

The first case is rather simple. If 4γφbw∩{xi}i = ∅, knowing that the points xi2073

are 1-approximate nearest-neighbors of cw, this implies that the ball 2γφbw is empty2074

(i.e., we know that 2γφbw ∩ P = ∅). Clearly, this means the the first separation2075

property holds for w.2076
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(a) No points inside γbw. (b) Leaf cell w can be resolved.

Figure 6.3: Basic separation properties achieved by during the construction of the
Chromatic AVD.

Consider the case when |4γφbw ∩ {xi}i| = 1, and let i be the class of the point2077

that lies inside 4γφbw. Following similar arguments to the previous case, this implies2078

that only points of class i could potentially lie inside of 2γφbw. Then, check if xi2079

lies inside the smaller ball expansion 2γbw. If not, we know that γbw is empty (i.e.,2080

γbw ∩ P = ∅), making the first separation property hold for w. Otherwise, we know2081

that 2γbw contains at least one point (i.e., xi), and additionally we know that 2γbw2082

is φ-separated from points of all other classes but i (as 2γφbw only contains points2083

of class i). Given that φ > 3, the nearest neighbor of every query point inside 2γbw2084

has class i. Therefore, w can be resolved with class i (namely, Cw = {i}), satisfying2085

the second separation property.2086

Lastly, it is possible that |4γφbw ∩ {xi}i| ≥ 2. However, it is possible to show2087

that if this is the case, it immediately implies that every point inside 4γφbw actually2088

lies inside of some ball b′w which is β-separated from w (see Figure 6.4a), where2089

β = 1/ε. Let x, y ∈ 4γφbw be the two points of different classes inside the ball2090

4γφbw with largest pairwise distance. Thus, it is easy to show that all the points2091

inside 4γφbw lie inside the two balls centered at x and y with radii equal to d(x, y),2092

as shown in Figure 6.4b. By definition of the (bichromatic) well-separated pair2093

decomposition D′, there exists a pair P ∈ D′ that contains x and y each in one of2094

its dumbbells, with length ℓ and center z. Now, we define the ball b′w with center at2095

z and radius r′w = max (d(z, x), d(z, y)) + d(x, y). By definition of P , we know that2096

d(z, x), d(z, y) ≤ ℓ and d(x, y) ≤ 2ℓ, thus making r′w ≤ 3ℓ. Let L be the distance2097

from w to z, we distinguish two cases based on the relationship between L and ℓ:2098

• L > c1βℓ. Consider the distance that separates the ball b′w from the cell w.2099

d(w, b′w) = L− r′w > c1βℓ− r′w ≥ (c1β/3− 1) r′w
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(a) (b)

Figure 6.4: It is possible that points of ≥ 2 classes lie inside of γφbw. However, this
case can be reduced to the two separation properties illustrated in Figure 6.3.

Since β = 1/ε, for all sufficiently large constants c1 ≥ 3(1 + ε), the distance2100

d(w, b′w) exceeds βr
′
w which implies that b′w is concentrically β-separated from2101

w.2102

• L ≤ c1βℓ. We will show that this case cannot occur, since otherwise the2103

dumbbell P would have caused w to be split, contradicting the assumption2104

that it is a leaf cell of Tinit. Since x, y, and w are all contained in the ball2105

4γφbw whose center lies within w, we have both that d(x,w) ≤ 4γφrw, and2106

ℓ < 2d(x, y) ≤ 2(8γφrw) = 16γφrw. Thus, by the triangle inequality, we have:2107

L ≤ d(x, y) + d(x,w) < ℓ+ 4γφrw < 16γφrw + 4γφrw = 20γφrw

Because L ≤ c1βℓ, it follows from our construction that there is at least one2108

ball bi(P) (with 0 ≤ i ≤ ⌈log c1β⌉) that overlaps w. Let b denote the smallest2109

such ball, and let r denote its radius. By the construction, we have that2110

r ≤ max (ℓ, 2L). Since our construction generates all quadtree boxes of size2111

r/(c2γ) that overlap b, it follows that sw ≤ r/(c2γ). Thus, we have:2112

rw = sw

√
d

2
≤ r
√
d

2c2γ
≤ max (ℓ, 2L)

√
d

2c2γ
<

20γφrw
√
d

c2γ
=

20φrw
√
d

c2

Choosing c2 ≥ 20φ
√
d yields the desired contradiction.2113

Finally, if |4γφbw ∩{xi}i| ≥ 2, we know all points inside 4γφbw are β-separated2114

from w. We can now proceed similarly to the previous case, by checking if one2115

of the computed 1-approximate nearest-neighbors lies inside the ball 2γbw. If2116
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2γbw ∩ {xi}i = ∅ we know that γbw is empty (i.e., γbw ∩ P = ∅), making the first2117

separation property hold for w. Otherwise, note that b′w is completely contained2118

inside 2γ(1 + ε)bw. Given that φ > 3, it is possible to show that for any query point2119

in w, all points in b′w are valid ε-approximate nearest neighbors. This implies that we2120

can resolve w with the class of any of the points inside of b′w, thus satisfying the second2121

separation property. In particular, we mark w as resolved with every class present in2122

the inner cluster b′w, namely, Cw = {l(p) | ∀ p ∈ b′w ∩ P} = {i | xi ∈ 4γφbw}.2123

6.3.2 The Reduce Step2124

From the initial partitioning as described in Lemma 6.3, every leaf cell w of2125

Tinit is either concentrically γ-separated from P (i.e., γbw ∩ P = ∅), or it is already2126

marked as resolved. For every leaf cell w in the first case, we will compute a set of2127

ε-representatives by leveraging the concentric ball lemma (see Lemma 5.1 in [75]). It2128

states that there exists a set Rw of ε-representatives for w of size O(1/(εγ) d−1
2 ), and2129

provides a way to compute such set.2130

Instead of directly applying this result, we use it to compute a set of ε/3-2131

representatives for any leaf cell w that is yet unresolved. Essentially, this leads to the2132

same asymptotic upper-bound on the size of Rw, meaning that |Rw| = O(1/(εγ)
d−1
2 ).2133

Once Rw is computed, we can proceed to mark w as either resolved or ambiguous as2134

follows.2135

Procedure to Mark Leaf Cells: For every leaf cell w, this procedure marks w as either2136

resolved or ambiguous, following a few defined cases that unfold from the contents2137

of the set Rw of points selected as representatives for w. Let r−w = ε (1−γ) rw/3.2138

1. If all the points in Rw belong to the same class.2139

For every point p ∈ Rw and class i ∈ C, compute a 1-approximate nearest-2140

neighbor of p among the points of Pi, denoted as the point xp,i. If d(p, xp,i) < r−w ,2141

then add xp,i to Rw. It is easy to show that xp,i would also be an ε-representative2142

for w. Repeat this for every point originally in Rw, and every class in the2143

training set.2144

(a) If any point xp,i was added to Rw, proceed with Case 2.2145

(b) Otherwise, mark w as resolved with the class of the points in Rw. Namely,2146

let i be the class of every point in Rw, then Cw = {i}.2147

2. If Rw contains points of more than one class.2148

Before proceeding, we will do some basic pruning of the set Rw. For every class2149

i, compute a net among the points of Rw of class i, using a radius of r−w to2150

compute the net, and replace the points of class i in Rw with the computed net.2151

It is easy to see that the remaining points of Rw are a set of ε-representatives2152

of w, and that every two points in Rw of the same class are at distance at least2153

r−w .2154
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(a) If the diameter of Rw is less than r−w , it is easy to prove that all the points2155

in Rw are ε-representatives of any point inside bw. Therefore, w can be2156

labeled as resolved with the class of all of the points in Rw. That is,2157

Cw = {l(p) | ∀ p ∈ Rw}.2158

(b) If the diameter is greater than or equal to r−w , w is marked as ambiguous.2159

Let A andR be the sets of ambiguous and resolved leaf cells of Tinit, respectively.2160

We will use some of these cells to build the Chromatic AVD, while ignoring the2161

remaining cells.2162

Consider the set of resolved leaf cells R, we partition this set into two subsets2163

Rb and Ri (named boundary and interior resolved leaf cells, respectively). We say2164

a resolved leaf cell w1 belongs to Rb, if and only if there exists another resolved2165

leaf cell w2 adjacent to w1, such that Cw2\Cw1 ̸= ∅. Every other resolved leaf cell2166

belongs to Ri (i.e., Ri = R \Rb). Note that both sets Rb and Ri can be identified2167

by a simple traversal over the leaf cells of Tinit, using linear time in the size of the2168

tree1.2169

Finally, we build a new tree T from the set of ambiguous and boundary resolved2170

leaf cells A ∪Rb. By well-known construction methods of quadtrees, as described in2171

Section 6.2, the leaf cells of T either belong to A ∪ Rb, or are “Steiner” leaf cells2172

added during the construction of T that cover the remainer of the space that is2173

uncovered by A ∪Rb.2174

Lemma 6.4. For any leaf cell w in the tree T such that w ̸∈ A∪Rb, w must cover a2175

space that is also covered by a collection of leaf cells of Tinit, all of which are resolved2176

with the same set of classes Cw.2177

Proof. This becomes apparent from the construction of T . In the new tree T ,2178

consider any leaf cell w of T that is not part of A ∪Rb (i.e., a “Steiner” leaf cell2179

added during the construction of the tree). Now, recall that the leaf cells of both2180

T and Tinit are a partitioning of (the same) space, which means that we can define2181

Ww = {w′ ∈ Tinit | w ∩ w′ ̸= ∅} as the collection of leaf cells of Tinit that cover the2182

same space covered by w.2183

Now, for any fixed w of T , it is easy to see that any two leaf cells w1, w2 ∈ Ww2184

must be resolved with the same set of classes. Otherwise, at least one of these two2185

would be part of the set Rb, which would be a contradiction to the fact that w is2186

a “Steiner” leaf cell of T . Therefore, any query inside w can be answered with the2187

classes Cw = Cw1 = Cw2 , and this can be determined during preprocessing by a2188

single query on Tinit (e.g., finding the leaf cell of Tinit that contains the center cw of2189

w is sufficient to know the contents of Cw).2190

This implies that after building tree T , and with some extra preprocessing to2191

resolve the “Steiner” leaf cells of the tree, we can use the resulting data structure to2192

correctly answer chromatic ε-approximate nearest-neighbor queries over the training2193

1Two leaf cells are adjacent if and only if a vertex of one of the cells “touches” the other cell.
This implies that the number of adjacency relations (i.e., edges in the implicit graph where the leaf
cells are the nodes) is O(2d m), where m is the number of leaf cells of the tree Tinit.
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set P . In other words, T can be used to answer ε-classification queries over P . We2194

call this data structure T the Chromatic AVD.2195

Lemma 6.5. The construction of T takes Õ
(
nγd log 1

ε

)
time.2196

Proof. Let’s analyze the total time needed to build our Chromatic AVD, namely the2197

tree T , by analyzing the time required to perform each step of the construction.2198

• Building Tinit has essentially the same complexity of building any standard2199

AVD [19,20, 43, 75]. This means that constructing Tinit takes O(m logm) time,2200

where m = nγd log 1
ε
. Note that during the construction, while computing the2201

set of ε-representatives of each leaf cell, each leaf cell can already be marked2202

as either ambiguous or resolved.2203

• Building the auxiliary trees T i
aux for every class i, takes O(n log n) time, as the2204

number of classes of P is considered to be a constant. Recall that because2205

these trees are only used to for 1-ANN queries, they only need to be standard2206

Quadtrees, and not AVDs.2207

• Identifying the set Rb requires a traversal over the leaf-level partitioning of2208

the space, which is linear in terms of the number of cells. Therefore, this step2209

requires O(m) time.2210

• Once the sets of ambiguous and boundary resolved leaf cells are identified,2211

namely, the sets A and Rb, the final tree T can be built. Roughly, this step2212

takes O(m logm) time.2213

• Finally, we must resolve each “Steiner” leaf cell of T , which can be done by2214

a single query over Tinit, each taking O(logm) time. Thus, this step takes2215

O (m logm) total time.2216

All together, the total construction time is dominated by the first step. There-2217

fore, the time required to construct T is O(m logm) = Õ(m) = Õ
(
nγd log 1

ε

)
.2218

6.4 Tree-size Analysis2219

6.4.1 Initial Size Bounds2220

Define the set of important leaf cells I of the tree Tinit as those leaf cells w for2221

which there exists two ε-border points inside ργbw for some constant ρ, such that2222

the distance between these points is lower-bounded by Ω(εγrw). Formally, we define2223

this set as I = {w ∈ Tinit | ∃p1, p2 ∈ ργbw ∩Kε, d(p1, p2) = Ω(εγrw)}.2224

Lemma 6.6. The number of important leaf cells of Tinit is |I| = O
(
kεγ

d log 1
ε

)
.2225

Proof. This proof follows from a charging argument on the set Kε of ε-border points2226

of P . More specifically, consider a well-separated pair decomposition D′′ of Kε with2227

constant separation factor of σ > 4, the charging scheme assigns every important2228
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leaf cell w ∈ I to a pair of D′′. Recall that D′′ can generally be consider to have2229

O(kε) pairs, where kε = |Kε|. It is important to note that both Kε and D′′ need not2230

be computed.2231

Given that w ∈ I, we know there exist two points p1, p2 ∈ ργbw ∩ Kε. Let2232

P ∈ D′′ be the pair of D′′ that contains both p1 and p2, each in one of its dumbbell2233

heads. We then charge w to the pair P. Denote z and ℓ to be the center and2234

length of P, respectively, we know the following. First, note that the distance2235

from cw (the center of w) to z is d(cw, z) ≤ ργrw + ℓ. Additionally, we know that2236

ℓ ≥ d(p1, p2)/2 = Ω(εγrw) by the properties of WSPDs described in Section 6.2.2237

Therefore, this implies that the ratio d(cw, z)/ℓ = O(1/ε).2238

Finally, fix some pair P ∈ D′′ with center z and length ℓ, and consider2239

all important leaf cells according to their distance to z. For any value of i ∈2240

[0, 1, . . . ,O(log 1/ε)], consider all leaf cells that can charge P whose distance to z is2241

between 2iℓ and 2i+1ℓ. From our previous analysis, rw ≥ d(cw, z)/ργ ≥ 2iℓ/ργ. By a2242

simple packing argument, the number of such leaf cells is at most O(γd). Thus, a2243

total of O(γd log 1/ε) cells can charge P. Note that no leaf cell whose distance to2244

z is Ω(ℓ/ε) can charge P, as it would contradict the fact that both p1 and p2 are2245

separated by a distance of Ω(εγrw). Finally, the proof follows by knowing that there2246

are at most O(kε) pairs in D′′.2247

Lemma 6.7. Every ambiguous leaf cell of Tinit is important, namely A ⊆ I.2248

Proof. Consider any ambiguous leaf cell w ∈ A of the tree Tinit. Knowing that w is2249

ambiguous implies that there must exist some point q ∈ γ
2
bw for which two of the2250

ε-representatives of w are valid ε-approximate nearest neighbors for q, both points2251

belong to different classes, and the distance between them is Ω(εγrw). Formally,2252

denote these points as p1, p2 ∈ P such that l(p1) ̸= l(p2), d(p1, p2) ≥ ε (1−γ) rw/4,2253

and d(q, p1), d(q, p2) ≤ (1+ε) dnn(q).2254

We will see now how to bound the distance from cw to any of these points as2255

a constant factor of rw (recall that rw =
√
d/2 sw). From the proof of Lemma 6.32256

in [75], we know that the ball c3γbw ∩ P ≠ ∅, for some constant c3 ≥ 1 + 2c2/
√
d.2257

In other words, dnn(cw) ≤ c3γ rw. From this, we can say that dnn(q) ≤ (1
2
+2258

c3)γrw. Applying the triangle inequality yields that d(cw, p1) ≤ d(cw, q) + d(q, p1) ≤2259 (
1
2
+ (1 + ε)(1

2
+ c3)

)
γ rw. Similarly, we can achieve the same bound for d(cw, p2).2260

Therefore, both p1, p2 ∈ ργbw for sufficiently large constant ρ (i.e., ρ ≥ ε(1
2
+2261

c3) + c3 + 1). Knowing also that d(p1, p2) = Ω(r−w) = Ω(εγrw) yields that the leaf2262

cell w ∈ I.2263

Lemma 6.8. Every boundary resolved leaf cell of Tinit is important, namely Rb ⊆ I.2264

2265

Proof. Let w1 ∈ Rb be any boundary resolved leaf cell of the tree Tinit, we know2266

there exists another leaf cell w2 ∈ Rb adjacent to w1, such that there exists some2267

class i ∈ Cw2\Cw1 . Let bw1 and bw2 be the corresponding bounding balls of w1 and2268

w2. By definition, any point q on the boundary shared by w1 and w2 has at least one2269

ε-representative from each cell, namely some points p1 ∈ Rw1 and p2 ∈ Rw2 , where2270
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l(p1) ̸= i and l(p2) = i. Additionally, by similar arguments to the ones described in2271

Lemma 6.7, we know that both p1, p2 ∈ ργbw for sufficiently large constant ρ.2272

Now, we proceed to prove that d(p1, p2) ≥ r−w/2. First, note that if w1 was2273

resolved by the initial marking of leaf cells as described in Lemma 6.3, then p22274

must lie outside of γbw. In such cases, clearly d(p1, p2) ≥ r−w/2. The remaining2275

possibility is that w1 was resolved after computing the set of representatives. From2276

the described procedure, in Case 1, we know that if d(p1, p2) < r−w/2, the point xp1,i2277

(which is a 1-approximate nearest-neighbor of p1 among points in Pi) would hold that2278

d(p1, xp1,i) < r−w . Hence, xp1,i should have been added to the set of representatives of2279

w1, contradicting the assumption that w1 is resolved, or that Cw1 does not contain i.2280

All together, we have that d(p1, p2) = Ω(r−w) = Ω(εγrw). From the definition of the2281

set of important leaf cells, w ∈ I.2282

Lemmas 6.7 and 6.8 imply that all the leaf cells used to build T belong to2283

the set of important leaf cells (i.e., A ∪Rb ⊆ I), whose size is upper-bounded by2284

Lemma 6.6. All together, and leveraging construction methods of quadtrees (see2285

Section 6.2), the size of T is proportional to the total number of leaf cells used to2286

build it, which we now know is O(kεγd log 1
ε
). However, we also need to account for2287

the set of ε-representatives stored for each ambiguous leaf cell, leading to a worst-case2288

upper-bound of O(kεγd log 1
ε
· 1/(εγ) d−1

2 ) total space to store T .2289

6.4.2 Spatial Amortization2290

The previous result can be improved by applying a technique called spatial2291

amortization, described by Arya et al. [75]. That is, we can remove the extra2292

O(1/(εγ) d−1
2 ) factor from the analysis of the space requirements for T .2293

This will be twofold process, as in order to successfully apply spatial amortiza-2294

tion to the analysis of the data structure, we first need to further reduce the set of2295

ε-representatives of every ambiguous leaf cell in the tree. Actually, the new set will2296

no longer be a set of ε-representatives, but it will just be a weak ε-coreset for query2297

points inside of each leaf cell.2298

Lemma 6.9. The total space required to store the ambiguous leaf cells of T is2299

O
(
kεγ

d log 1
ε

)
.2300

Consider any ambiguous leaf cell w of T , and in particular, consider the set2301

Rw of ε-representatives of w. By construction, Rw has the property that every point2302

q ∈ bw has at least one ε-approximate nearest-neighbor in the set Rw. However, note2303

that the opposite is not necessarily true, as not every p ∈ Rw is an ε-approximate2304

nearest-neighbor of some point in bw. Even worst, while the fact the w is ambiguous2305

indicates that at least two points in Rw belong to Kε, the remaining points of Rw2306

might not, which in turn prevents the application of a spatial amortization analysis.2307

Overall, this suggests some of the points of Rw might not be necessary to distinguish2308

between the classes that change the classification of points inside bw (see Figure 6.5a).2309

This can be resolved as follows. Suppose we have access to the Voronoi diagram2310

of the set of points Rw, and consider the boundaries between adjacent cells of this2311
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diagram. Any boundary that separates two points of Rw of different classes, and that2312

intersects bw, is relevant to the classification any query point inside bw. Formally, we2313

define the set R′
w ⊆ Rw of border points of Rw as (see Figure 6.5b):2314

R′
w = {p ∈ Rw | ∃ q ∈ bw, p

′ ∈ Rw such that l(p) ̸= l(p′) ∧ d(q, p) = d(q, p′)}

This new set R′
w has some useful properties. Note that for any query point2315

q ∈ bw, its (exact) nearest-neighbor in R′
w belongs to the same class as its (exact)2316

nearest-neighbor in Rw, which itself is an ε-approximate nearest-neighbor of q among2317

the points of P . In other words, R′
w is an ε-coreset for any query point in bw.2318

This implies that we can replace the set of ε-representatives of w with the set R′
w.2319

Moreover, this means that by the definition of ε-border points, R′
w ⊆ Kε. Note that2320

we can use the algorithm described in Chapter 3 to compute R′
w in O(|Rw| · |R′

w|2)2321

time, increases the construction time described in Lemma 6.5 by a factor of k2
ε .2322

(a) Set of ε-reps Rw. (b) Set of border points R′
w. (c) Relevant pairs of D′′.

Figure 6.5: The set Rw of ε-representatives of w can be reduced to the set R′
w. This

later set is a subset of Kε, and can be charged to a proportional number of relevant
pairs of D′′.

Now, let’s proceed with the charging argument over the pairs of the same2323

WSPD D′′ used in Lemma 6.6. Instead of only charging w to a single pair (as2324

described in Lemma 6.7), we charge every point stored in R′
w to a pair of D′′. Thus,2325

consider the following procedure to find a sufficient number of pairs to charge all2326

the points in R′
w, which is derived from a similar procedure proposed in [75]. See2327

Figure 6.5c for an illustrative example.2328

1. Compute a net of R′
w using radius r−w , and denote this subset R′′

w. Given that2329

all the points of R′
w that belong to the same class are already separated by a2330

distance of at least r−w , we know that |R′′
w| = Θ(|R′

w|), hiding constants2 that2331

depend exponentially on d.2332

2. Find the two of points of p1, p2 ∈ R′′
w with smallest pairwise distance, and2333

consider the pair of P ∈ D′′ that contains both points p1 and p2, each in one2334

2More specifically, we know that |R′′
w| ≥ |R′

w|/ϕd−1c, where ϕd−1 is the kissing number in
d-dimensional Euclidean space, and c is the number of classes in P .
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of its dumbbell heads. Note that by having computed a net in the previous2335

step, d(p1, p2) ≥ r−w .2336

3. Delete one of the two points from R′′
w (without lost of generality, delete p1).2337

4. Charge every point of R′
w that is covered by p1 (i.e., whose distance to p1 is2338

≤ r−w) to the pair P . By the arguments described in step 1 on the size of R′′
w,2339

we know that P receives a charge from O(1) points of R′
w.2340

5. Repeat steps 2-4 with the remaining points of R′′
w until the set is empty.2341

Evidently, the number of pairs found (and charged) equals |R′′
w| − 1. All2342

together, we have that the total space required to store all the ambiguous leaf cells2343

is proportional to the sum of charges to every pair of D′′. Using the same arguments2344

as Lemma 6.6, this implies that the total storage is O(kεγd log 1
ε
). This completes2345

the proof of Theorem 6.1.2346
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Chapter 7: Conclusions2347

In this dissertation, we have presented different techniques that successfully2348

reduce the query time and space complexities of the nearest-neighbor rule. While2349

usually nearest-neighbor classification would be highly dependent on n, the size of2350

the training set P , our results provide a clear way to reduce its dependency to k.2351

This parameter is defined as the number of border points of P , and characterizes2352

the intrinsic complexity of the class boundaries of the training set.2353

The results presented here open a series of potential directions for future re-2354

search to further improve the efficiency of the nearest-neighbor rule. While mostly2355

theoretical, these results can help expand the scope of applicability of this classifica-2356

tion method for larger real-world use cases. Furthermore, our results on training set2357

reduction algorithms imply their potential application beyond the scope of nearest-2358

neighbor classification, by reducing the data used to train other classification models.2359

While many of the classification guarantees provided here would not hold –with most2360

likeliness– for other classification methods, the upper-bounds on subset sizes would.2361

In the following sections, we retrace most of the results presented throughout2362

this dissertation, and discuss some of the remaining open problems and limitations.2363

7.1 Training Set Reduction2364

Most of the results presented in this dissertation can be described as training2365

set reduction approaches. In this case, the goal is to find a subset R ⊆ P , whose2366

induced class boundaries resemble the original class boundaries of P . This subset is2367

then used by the nearest-neighbor rule to answer any incoming queries, instead of2368

using the full training set. As seen throughout this book, different approaches yield2369

different subsets, and depending on the approach used, the classification guarantees2370

of the nearest-neighbor rule after training set reduction can vary.2371

7.1.1 Boundary Preservation2372

The goal of boundary preservation algorithms is to compute the set of border2373

points of P . Given that by definition, this subset of points fully characterize the class2374

boundaries of P , this reduction of the training set does not affect the classification2375

accuracy of the nearest-neighbor rule. That is, the class boundaries remain the same.2376

Moreover, these algorithms achieve the expected dependency reduction from n to k,2377

as k is defined as the size of their selected subset.2378

In Chapter 3, we present an improvement over Eppstein’s recent algorithm [8]2379
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to compute the set of border points of any training set P ⊂ Rd, with constant d.2380

This improved algorithm reduces the complexity of computing such subset to O(nk2)2381

worst-case time, while Eppstein’s original algorithm has O(n2 + nk2) runtime. A2382

paper describing this result is under submission, and can be found here [52].2383

7.1.2 Condensation Algorithms2384

Alternatively, condensation algorithms aim to compute subsets R ⊆ P whose2385

induced class boundaries are “similar” to the original class boundaries, albeit not the2386

same as with boundary preservation algorithms. As formally described in Chapter 2,2387

condensation algorithms select either consistent or selective subsets of P , which can2388

only guarantee the correct classification of points in P . This is a rather popular line2389

of research [9,13–17,34,38], with many heuristic approaches proposed to compute2390

such subsets. Until our work, theoretical results on these heuristics were scarce.2391

In Chapter 4, we present the first theoretical results on upper-bounding the2392

subset sizes of condensation algorithms. In particular, we show that FCNN and2393

MSS, which were considered state-of-the-art for the condensation problem, can not2394

be bounded in terms of k. Additionally, we propose new quadratic-time algorithms2395

called SFCNN, RSS, and VSS, and prove upper-bounds on their subset sizes as a2396

function of k. These upper-bounds are tight up-to constant factors, and supports2397

the good empirical behavior observed for these condensation algorithms. Most of2398

these results were published in a series of papers [54–56].2399

Despite our efforts, some questions remain open. First, it is unclear whether2400

our upper-bound for the RSS algorithm in terms of k can be improved to have linear2401

dependencies on d, as our current result has a term with exponential dependency2402

on d. So far, we have been unable to find a matching lower-bound for RSS in2403

terms of k, keeping the hope that this improvement is indeed possible. The other2404

important open question revolves around SFCNN. While this algorithm performs2405

really well in practice, we were only able to prove a O(k log (1/γ)) upper-bound on2406

its selected subset (compared with the O(k) upper-bound on RSS). Thus, it remains2407

open whether the log (1/γ) factor in the upper-bound of SFCNN can be dropped.2408

7.1.3 ε-Coresets2409

Both boundary preservation and condensation algorithms make the assumption2410

that the nearest-neighbor rule computes nearest-neighbors exactly. However, efficient2411

data structures for nearest-neighbor search compute nearest-neighbor approximately2412

rather than exactly. That is, given an approximation parameter ε ∈ [0, 1], a query2413

point q ∈ X can be assigned the class of any point of P whose distance to q is2414

at most 1+ε times the distance from q to its true nearest-neighbor. This relaxed2415

assumption immediately breaks the classification guarantees provided by both types2416

of training set reduction techniques.2417

Chapter 5 presents a new framework for training set reduction that is sensitive2418

to these approximations, as well as a characterization of ε-coresets for the nearest-2419

neighbor rule. First, we define such an ε-coreset as a subset R ⊆ P where for every2420
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query point q ∈ X the class of its exact nearest-neighbor in R is the same as the2421

class of a valid ε-approximate nearest-neighbor of q in P . In order to compute2422

such subsets, we extended the criteria used for condensation to be approximation-2423

sensitive, and modified the condensation algorithms from Chapter 4 to compute2424

subsets under these new criteria. Finally, this gives us a way to compute ε-coresets2425

of size O(k log 1
γ
(1/ε)ddim(X )+1). These results have been published in the following2426

paper [66].2427

The biggest shortcoming of this result is the size of the ε-coresets, having high2428

dependencies on γ and ε. The lower-bound presented in Lemma 5.3 indicate that2429

our coreset construction might not be optimal, and that the terms on γ and ε could2430

be potentially dropped. However, despite our efforts, we were unable to achieve this.2431

7.2 Chromatic Nearest-Neighbor Search2432

Unsurprisingly, the standard approach to answer nearest-neighbor classification2433

queries is to reduce them to nearest-neighbor search queries. However, as described2434

in Chapter 6, there exists an alternative approach towards achieving more efficient2435

nearest-neighbor classification. This consists of having algorithms and data structures2436

to directly compute the class of the nearest-neighbor of any given query point; i.e.,2437

without computing the nearest-neighbor itself.2438

To this end, we proposed a tailor-made data structure for approximate nearest-2439

neighbor classification called Chromatic AVD. Given a training set P in d-dimensional2440

Euclidean space (assuming constant d and the ℓ2 metric) and an approximation2441

parameter ε ∈ [0, 1
2
], we construct a quadtree-based partitioning of space to answer2442

any classification query approximately. That is, for any query point q ∈ Rd this data2443

structure returns the class of any of q’s valid ε-approximate nearest-neighbors in P .2444

This data structure is designed as a simplification of state-of-the-art AVDs [20] for2445

approximate nearest-neighbor search, and completely reduces its dependency from2446

n to kε, which is defined as the number of ε-border points of P , and describes the2447

intrinsic complexity of the ε-approximate class boundaries. These results have been2448

published in the following paper [78].2449

There are a few possible improvements and extensions that would be worth2450

exploring. First, the query time and space dependencies of the Chromatic AVD are2451

expressed in terms of kε and not k, where kε ≥ k. However, it is unclear if kε can2452

be expressed in terms of k, or if the analysis and construction of the Chromatic2453

AVD can be improved to reduce the expressed dependencies to be in terms of k.2454

Another interesting direction is trying to obtain query times that are query-sensitive,2455

similar to the result by Mount et al. [51] in 1997, where query points with high2456

chromatic density are easier to answer than query points with low chromatic density.2457

Finally, yet another direction would be on extending this data structure to answer2458

ε-approximate k-NN classification queries, for k ≥ 1. While there exists some work2459

on this problem [51,81], all existing results have dependencies on n.2460
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